Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Oxygen storage capacity and structural flexibility of LuFe2O4+x (0≤x≤0.5)

Abstract

Combining functionalities in devices with high performances is a great challenge that rests on the discovery and optimization of materials. In this framework, layered oxides are attractive for numerous purposes, from energy conversion and storage to magnetic and electric properties. We demonstrate here the oxygen storage ability of ferroelectric LuFe2O4+x within a large x range (from 0 to 0.5) and its cycling possibility. The combination of thermogravimetric analyses, X-ray diffraction and transmission electron microscopy evidences a complex oxygen intercalation/de-intercalation process with several intermediate metastable states. This topotactic mechanism is mainly governed by nanoscale structures involving a shift of the cationic layers. The ferrite is highly promising because absorption begins at a low temperature (), occurs in a low oxygen pressure and the uptake of oxygen is reversible without altering the quality of the crystals. The storage/release of oxygen coupled to the transport and magnetic properties of LnFe2O4 opens the door to new tunable multifunctional applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Perspective view of the monoclinic M structure of LuFe2O4 at room temperature, and comparison with the M′ sub-cell of LuFe2O4+x.
Figure 2: Temperature dependence of the weight evolution and of the XRD patterns of LuFe2O4+x from room temperature up to 500 °C (in a dynamic primary vacuum).
Figure 3: EDPs and corresponding schematized crystal cells versus oxygen content (from O4 to O4.5).
Figure 4: Synchrotron XRPD patterns of the M, R13 and M′ phases.
Figure 5: Oxygen storage/release cycle.
Figure 6: Effect of the oxygen content on magnetic properties of LuFe2O4+x.

Similar content being viewed by others

References

  1. McEvoy, A. J. Materials for high-temperature oxygen reduction in solid oxide fuel cells. J. Mater. Sci. 36, 1087–1091 (2001).

    Article  CAS  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005).

    Article  CAS  Google Scholar 

  3. Shao, Z. P. & Haile, S. M. A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004).

    Article  CAS  Google Scholar 

  4. Kim, S. D. et al. Ni-YSZ cermet anode fabricated from NiO-YSZ composite powder for high-performance and durability of solid oxide fuel cells. Solid State Ion. 178, 1304–1309 (2007).

    Article  CAS  Google Scholar 

  5. Kehoe, A. B., Scanlon, D. O. & Watson, G. W. Role of lattice distortions in the oxygen storage capacity of divalent doped CeO2 . Chem. Mater. 23, 4464–4468 (2011).

    Article  CAS  Google Scholar 

  6. Remsen, S. & Dabrowski, B. Synthesis and oxygen storage capacities of hexagonal Dy1−xYxMnO3+δ . Chem. Mater. 23, 3818–3827 (2011).

    Article  CAS  Google Scholar 

  7. Carter, S. et al. Oxygen transport in selected nonstoichiometric perovskite-structure oxides. Solid State Ion. 53–56, 597–605 (1992).

    Article  Google Scholar 

  8. Karppinen, M. et al. Oxygen non stoichiometry in YBaCo4O7+δ: Large low-temperature oxygen absorption/desorption capability. Chem. Mater. 18, 490–494 (2006).

    Article  CAS  Google Scholar 

  9. Sakai, N. et al. Structure and transport property of manganese–chromium–iron oxide as a main compound in oxide scales of alloy interconnects for SOFCs. Solid State Ion. 176, 681–686 (2005).

    Article  CAS  Google Scholar 

  10. Hayward, M.A. Structural and magnetic properties of topotactically reduced YSr2Mn2O7−x (0<x<1.5). Chem. Mater. 18, 321–327 (2006).

    Article  CAS  Google Scholar 

  11. Bredesen, R., Norby, T., Bardal, A. & Vibeke, L. Phase relations, chemical diffusion and electrical conductivity in pure and dopes Sr4Fe6O13 mixed conductors materials. Solid State Ion. 135, 687–697 (2000).

    Article  CAS  Google Scholar 

  12. Fisher, C. A. J. & Islam, M. S. Mixed ionic/electronic conductors Sr2Fe2O5 and Sr4Fe6O13: atomic-scale studies of defects and ion migration. J. Mater. Chem. 15, 3200–3207 (2005).

    Article  CAS  Google Scholar 

  13. Ikeda, N. et al. Ferroelectricity from iron valence ordering in the charge-frustrated system LuFe2O4 . Nature 436, 1136–1138 (2005).

    Article  CAS  Google Scholar 

  14. Cheong, S-W. & Mostovoy, M. Multiferroics: A magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007).

    Article  CAS  Google Scholar 

  15. Isobe, M., Kimizuka, N., Iida, J. & Takekawa, S. Structures of LuFeCoO4 and LuFe2O4 . Acta Crystallogr. C 46, 1917–1918 (1990).

    Article  Google Scholar 

  16. Bourgeois, J. et al. Evidence of oxygen-dependent modulation in LuFe2O4 . Phys. Rev. B 85 064102 (2012).

  17. Iwata, M. & Ishibashi, Y. Possible commensurate phases in LuFe2O4 . J. Phys. Soc. Jpn 81, 035003 (2012).

    Article  Google Scholar 

  18. Hervieu, M. et al. Nanostructures in LuFe2O4−δ . Solid State Sci. 23, 26–34 (2013).

    Article  CAS  Google Scholar 

  19. Cao, S. et al. Extreme chemical sensitivity of nonlinear conductivity in charge-ordered LuFe2O4 . Sci. Rep. 2, 330 (2012).

    Article  Google Scholar 

  20. Wang, F. et al. Oxygen stoichiometry and magnetic properties of LuFe2O4+δ . J. Appl. Phys. 113, 063909 (2013).

    Article  Google Scholar 

  21. Christianson, A. D. et al. Three-dimensional magnetic correlations in multiferroic LuFe2O4 . Phys. Rev. Lett. 100, 107601 (2008).

    Article  CAS  Google Scholar 

  22. Patankar, S. et al. Tuning the magnetic properties of the multiferroic LuFe2O4 by moderate thermal treatment. Euro Phys. Lett. 90, 57007 (2010).

    Article  Google Scholar 

  23. Gérardin, R., Nodari, I., Aqachmar, H. & Evrard, O. Mise en évidence de deux nouvelles familles de ferrites de lanthanoïdes Ln2Fe4O9 et Ln4Fe6O15 . C. R. Acad. Sci. 295, 863 (1982).

    Google Scholar 

  24. Gérardin, R., Aqachmar, H., Nodari, I., Brice, J. F. & Evrard, O. Contribution à l’étude du système Lu2O3–Mn2O3–Fe2O3 et caractérisation de deux variétés cristallographiques de Lu2Mn2Fe2O9 . J. Phys. Chem. Solids 50, 43–48 (1989).

    Article  Google Scholar 

  25. Zhang, Y., Yang, H. X., Ma, C., Tian, H. F. & Li, J. Q Charge-stripe order in electronic ferroelectric LuFe2O4 . Phys. Rev. Lett. 98, 247602 (2007).

    Article  CAS  Google Scholar 

  26. Maruyama, T., Murakami, Y., Shindo, D., Abe, N. & Arima, T. Observations of charge-ordered and magnetic domains in LuFe2O4 using transmission electron microscopy. Phys. Rev. B 86, 054202 (2012).

    Article  Google Scholar 

  27. Yamada, Y., Kitsuda, K., Nohdo, S. & Ikeda, N. Charge and spin ordering process in the mixed-valence system LuFe2O4: Charge ordering. Phys. Rev. B 62, 12167–12174 (2000).

    Article  CAS  Google Scholar 

  28. Wu, W. et al. Formation of pancakelike Ising domains and giant magnetic coercivity in ferrimagnetic LuFe2O4 . Phys. Rev. Lett. 101, 137203 (2008).

    Article  Google Scholar 

  29. Van Tendeloo, G. & Amelinckx, S. The origin of diffuse intensity in electron diffraction patterns. Phase Transit. 67, 101–135 (1998).

    Article  CAS  Google Scholar 

  30. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  31. Wagemaker, M., Borghols, W. J. H. & Mulder, F. M. Large impact of the particle size on insertion reactions. A case for anatase LixTiO2 . J. Am. Chem. Soc. 129, 4323–4327 (2007).

    Article  CAS  Google Scholar 

  32. Grenier, J-C., Wattiaux, A., Demourgues, A., Pouchard, M. & Hagenmuller, P. Electrochemical oxidation: A new way for preparing high oxidation states of transition metals. Solid State Ion. 63–65, 825–832 (1993).

    Article  Google Scholar 

  33. Bourgeois, J. et al. Evidence of magnetic phase separation in LuFe2O4 . Phys. Rev. B 86, 024413 (2012).

    Article  Google Scholar 

  34. Delmas, C., Braconnier, J-J., Fouassier, C. & Hagenmuller, P. Electrochemical intercalation of sodium in NaxCoO2 bronzes. Solid State Ion. 3–4, 165–169 (1981).

    Article  Google Scholar 

  35. Kim, S., Ma, X., Ping Ong, S. & Ceder, G. A comparison of destabilization mechanisms of the layered NaxMO2 and LixMO2 compounds upon alkali de-intercalation. Phys. Chem. Chem. Phys. 14, 15571–15578 (2012).

    Article  CAS  Google Scholar 

  36. Paulus, W., Heger, G., Rudolf, P. & Schöllhorn, R. In situ neutron diffraction studies on the electrochemical oxidation of polycrystalline La2CuO4 . Physica C 235-240, 861–862 (1994).

    Article  CAS  Google Scholar 

  37. Villesuzanne, A. et al. On the role of lattice dynamics on low-temperature oxygen mobility in solid oxides: A neutron diffraction and first-principles investigation of La2CuO4+δ . J. Solid State Electrochem. 15, 357–366 (2011).

    Article  CAS  Google Scholar 

  38. Nagai, Y. et al. X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr = 1). Catal. Today 74, 225–234 (2002).

    Article  CAS  Google Scholar 

  39. Gai, P. L. A new structural transformation mechanism in catalytic oxides. Acta Crystallogr. B 53, 346–352 (1997).

    Article  Google Scholar 

  40. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by financial support from the French Agence Nationale de la Recherche (ANR-08-BLAN-0005-01 and JC08-331297). The authors thank M. T. Sougrati (Institut Charles Gerhardt) for Mössbauer experiments.

Author information

Authors and Affiliations

Authors

Contributions

The samples were prepared by J.B., magnetic properties were measured by M.P. and A.M., E.E. collected the synchrotron XRD data, A.G. and C.M. analysed TGA data and XRD diffractograms, and M.H. performed the electron microscopy observations and data analysis. The manuscript was written by M.H. and C.M. and revised by F.D., J.R., A.G. and A.M. The project direction was developed by F.D. and C.M.

Corresponding author

Correspondence to C. Martin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 814 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hervieu, M., Guesdon, A., Bourgeois, J. et al. Oxygen storage capacity and structural flexibility of LuFe2O4+x (0≤x≤0.5). Nature Mater 13, 74–80 (2014). https://doi.org/10.1038/nmat3809

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3809

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing