Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques

Abstract

The rich internal degrees of freedom of magnetic domain walls make them an attractive complement to electron charge for exploring new concepts of storage, transport and processing of information. Here we use the tunable internal structure of a domain wall in a perpendicularly magnetized GaMnAsP/GaAs ferromagnetic semiconductor and demonstrate devices in which piezoelectrically controlled magnetic anisotropy yields up to 500% mobility variations for an electrical-current-driven domain wall. We observe current-induced domain wall motion over a wide range of current-pulse amplitudes and report a direct observation and the piezoelectric control of the Walker breakdown separating two regimes with different mobilities. Our work demonstrates that in spin–orbit-coupled ferromagnets with weak extrinsic domain wall pinning, the piezoelectric control allows one to experimentally assess the upper and lower boundaries of the characteristic ratio of adiabatic and non-adiabatic spin-transfer torques in the current-driven domain wall motion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DW propagation in piezo-strain-controlled magnetic microbars.
Figure 2: Current-induced DW motion controlled by in-plane magnetic anisotropy.
Figure 3: Piezoelectric control of in-plane magnetic anisotropy.
Figure 4: Piezoelectric control of current-and magnetic-field-driven DW motion.

Similar content being viewed by others

References

  1. Chappert, C., Fert, A. & Dau, F. N. V. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    Article  CAS  Google Scholar 

  2. Parkin, S. S. P., Hayshi, M. & Thomas, L. Magnetic domain-wall racetrack memory. Science 320, 190–194 (2008).

    Article  CAS  Google Scholar 

  3. Allwood, D. A. et al. Magnetic domain-wall logic. Science 309, 1688–1692 (2005).

    Article  CAS  Google Scholar 

  4. Berger, L. Exchange interaction between ferromagnetic domain wall and electric current in very thin metallic films. J. Appl. Phys. 55, 1954–1956 (1984).

    Article  CAS  Google Scholar 

  5. Freitas, P. P. & Berger, L. Observation of s- d exchange force between domain walls and electric current in very thin permalloy films. J. Appl. Phys. 57, 1266–1269 (1985).

    Article  CAS  Google Scholar 

  6. Yamaguchi, A. et al. Real-space observation of current-driven domain wall motion in submicron magnetic wires. Phys. Rev. Lett. 92, 077205 (2004).

    Article  CAS  Google Scholar 

  7. Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferre, J. Domain wall mobility, stability and walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).

    Article  Google Scholar 

  8. Ralph, D. C., Stiles, M. D. & Bader, S. (eds) Current perspectives: Spin transfer torques. J. Magn. Magn. Mater. 320, 1190–1216 (2008).

  9. Vanhaverbeke, A. & Viret, M. Simple model of current-induced spin torque in domain walls. Phys. Rev. B 75, 024411 (2007).

    Article  Google Scholar 

  10. Fernández-Rossier, J., Núñez, A. S., Abolfath, M. & MacDonald, A. H. Optical spin transfer in ferromagnetic semiconductors. Preprint at http://arxiv.org/abs/cond-mat/0304492 (2003).

  11. Nemec, P. et al. Experimental observation of the optical spin transfer torque. Nature Phys. 8, 411–415 (2012).

    Article  CAS  Google Scholar 

  12. Berger, L. Emission of spin waves by a magnetic multilayer traversed by a current. Phys. Rev. B 54, 9353–9358 (1996).

    Article  CAS  Google Scholar 

  13. Slonczewski, J. C. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1–L7 (1996).

    Article  CAS  Google Scholar 

  14. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  Google Scholar 

  15. Garate, I., Gilmore, K., Stiles, M. D. & MacDonald, A. H. Non-adiabatic spin transfer torque in real materials. Phys. Rev. B 79, 104416 (2009).

    Article  Google Scholar 

  16. Hals, K. M. D., Nguyen, A. K. & Brataas, A. Intrinsic coupling between current and domain wall motion in (Ga,Mn)As. Phys. Rev. Lett. 102, 256601 (2009).

    Article  Google Scholar 

  17. Adam, J. et al. Nonadiabatic spin-transfer torque in (Ga,Mn)As with perpendicular anisotropy. Phys. Rev. B 80, 193204 (2009).

    Article  Google Scholar 

  18. Curiale, J., Lemaitre, A., Ulysse, C., Faini, G. & Jeudy, V. Spin drift velocity, polarization, and current-driven domain-wall motion in (Ga,Mn)(As,P). Phys. Rev. Lett. 108, 076604 (2012).

    Article  CAS  Google Scholar 

  19. Yamanouchi, M., Chiba, D., Matsukura, F. & Ohno, H. Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004).

    Article  CAS  Google Scholar 

  20. Yamanouchi, M., Chiba, D., Matsukura, F., Dietl, T. & Ohno, H. Velocity of domain-wall motion induced by electrical current in a ferromagnetic semiconductor (Ga,Mn)As. Phys. Rev. Lett. 96, 096601 (2006).

    Article  CAS  Google Scholar 

  21. Wunderlich, J. et al. Local control of magnetocrystalline anisotropy in (Ga,Mn)As microdevices: Demonstration in current-induced switching. Phys. Rev. B 76, 054424 (2007).

    Article  Google Scholar 

  22. Thiaville, A., Nakatani, Y., Miltat, J. & Suzuki, Y. Micromagnetic understanding of current-driven domain wall motion in patterned nanowires. Europhys. Lett. 69, 990–996 (2005).

    Article  CAS  Google Scholar 

  23. Metaxas, P. J. et al. Creep and flow regimes of magnetic domain-wall motion in ultrathin Pt/Co/Pt films with perpendicular anisotropy. Phys. Rev. Lett. 99, 217208 (2007).

    Article  CAS  Google Scholar 

  24. Koyama, T. et al. Observation of the intrinsic pinning of a magnetic domain wall in a ferromagnetic nanowire. Nature Mater. 10, 194–197 (2011).

    Article  CAS  Google Scholar 

  25. Wang, K. Y. et al. Current-driven domain wall motion across a wide temperature range in a (Ga,Mn)(As,P) device. Appl. Phys. Lett. 97, 262102 (2010).

    Article  Google Scholar 

  26. De Ranieri, E. et al. Lithographically and electrically controlled strain effects on anisotropic magnetoresistance in (Ga,Mn)As. New J. Phys. 10, 065003 (2008).

    Article  Google Scholar 

  27. Zemen, J., Kucera, J., Olejnik, K. & Jungwirth, T. Magneto crystalline anisotropies in (Ga,Mn)As: A systematic theoretical study and comparison with experiment. Phys. Rev. B 80, 155203 (2009).

    Article  Google Scholar 

  28. Roy, P. E. & Wunderlich, J. In-plane magnetic anisotropy dependence of critical current density, walker field and domain-wall velocity in a stripe with perpendicular anisotropy. Appl. Phys. Lett. 99, 122504 (2011).

    Article  Google Scholar 

  29. Rushforth, A. W. et al. Voltage control of magnetocrystalline anisotropy in ferromagnetic–semiconductor/piezoelectric hybrid structures. Phys. Rev. B 78, 085314 (2008).

    Article  Google Scholar 

  30. Tatara, G. et al. Threshold current of domain wall motion under extrinsic pinning, β-term and nonadiabaticity. J. Phys. Soc. Jpn 75, 064708 (2006).

    Article  Google Scholar 

  31. Miron, I. M. et al. Fast current-induced domain-wall motion controlled by the Rashba effect. Nature Mater. 10, 419–423 (2011).

    Article  CAS  Google Scholar 

  32. Fang, D. et al. Spin-orbit driven ferromagnetic resonance. Nature Nanotech. 6, 413–417 (2011).

    Article  CAS  Google Scholar 

  33. Liu, X. & Furdyna, J. K. Ferromagnetic resonance in Ga1−xMnxAs dilute magnetic semiconductors. J. Phys. Condens. Matter 18, R245–R279 (2006).

    Article  CAS  Google Scholar 

  34. Jungwirth, T., Sinova, J., Mašek, J., Kučera, J. & MacDonald, A. H. Theory of ferromagnetic (III,Mn)V semiconductors. Rev. Mod. Phys. 78, 809–864 (2006).

    Article  CAS  Google Scholar 

  35. Schellekens, A. J., van den Brink, A., Franken, J. H., Swagten, H. J. M. & Koopmans, B. Electric-field control of domain wall motion in perpendicularly magnetized materials. Nature Commun. 3, 848 (2012).

    Article  Google Scholar 

  36. Chiba, D. et al. Electric-field control of magnetic domain-wall velocity in ultrathin cobalt with perpendicular magnetization. Nature Commun. 3, 888 (2012).

    Article  CAS  Google Scholar 

  37. Dourlat, A., Jeudy, V., Lemaitre, A. & Gourdon, C. Field-driven domain-wall dynamics in (Ga,Mn)As films with perpendicular anisotropy. Phys. Rev. B 78, 161303(R) (2008).

    Article  Google Scholar 

  38. Novák, V. et al. Curie point singularity in the temperature derivative of resistivity in (Ga,Mn)As. Phys. Rev. Lett. 101, 077201 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from EU grants ERC Advanced Grant 268066-0MSPIN and FP7-215368 SemiSpinNet, and from Czech Republic grant Praemium Academiae, from the Ministry of Education of the Czech Republic, Grant No. LM2011026.

Author information

Authors and Affiliations

Authors

Contributions

E.D.R., J.W., P.E.R. and E.K.V. developed the experimental set-up, and performed the measurements. P.E.R., T.J., J.W. and E.D.R. performed the theoretical analysis and modelling. R.P.C. and B.L.G. grew and supplied the GaMnAsP films. E.D.R., A.C.I., D.H., E.K.V. and J.W. designed and fabricated the devices. E.D.R., D.F. and A.C. characterized the magnetic properties of the DW devices and unpatterned films. T.J., J.W., E.D.R. and P.E.R. wrote the paper. J.W., E.D.R. and P.E.R. planned the project. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to J. Wunderlich.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1282 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Ranieri, E., Roy, P., Fang, D. et al. Piezoelectric control of the mobility of a domain wall driven by adiabatic and non-adiabatic torques. Nature Mater 12, 808–814 (2013). https://doi.org/10.1038/nmat3657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing