Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A magnetic switch for the control of cell death signalling in in vitro and in vivo systems

Abstract

The regulation of cellular activities in a controlled manner is one of the most challenging issues in fields ranging from cell biology to biomedicine1,2. Nanoparticles have the potential of becoming useful tools for controlling cell signalling pathways in a space and time selective fashion3,4. Here, we have developed magnetic nanoparticles that turn on apoptosis cell signalling by using a magnetic field in a remote and non-invasive manner. The magnetic switch consists of zinc-doped iron oxide magnetic nanoparticles5 (Zn0.4Fe2.6O4), conjugated with a targeting antibody for death receptor 4 (DR4) of DLD-1 colon cancer cells. The magnetic switch, in its On mode when a magnetic field is applied to aggregate magnetic nanoparticle-bound DR4s, promotes apoptosis signalling pathways. We have also demonstrated that the magnetic switch is operable at the micrometre scale and that it can be applied in an in vivo system where apoptotic morphological changes of zebrafish are successfully induced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A schematic representation of the magnetic switch for apoptosis signalling in in vitro cells and in a zebrafish.
Figure 2: Antibody-conjugated MNPs and the magnetic switch set-up for apoptosis signalling.
Figure 3: In vitro apoptosis induction in the DLD-1 colon cancer cell line.
Figure 4: Spatial control of apoptosis signalling.
Figure 5: In vivo magnetic apoptosis signalling for zebrafish.

Similar content being viewed by others

References

  1. Hoffman, B. D., Grashoff, C. & Schwartz, M. A. Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011).

    Article  CAS  Google Scholar 

  2. Gorostiza, P. & Isacoff, E. Y. Optical switches for remote and noninvasive control of cell signaling. Science 322, 395–399 (2008).

    Article  CAS  Google Scholar 

  3. Lee, S. E., Liu, G. L., Kim, F. & Lee, L. P. Remote optical switch for localized and selective control of gene interference. Nano Lett. 9, 562–570 (2009).

    Article  CAS  Google Scholar 

  4. Chung, I. et al. Spatial control of EGF receptor activation by reversible dimerization on living cells. Nature 464, 783–787 (2010).

    Article  CAS  Google Scholar 

  5. Jang, J-t. et al. Critical enhancements of MRI contrast and hyperthermic effects by dopant-controlled magnetic nanoparticles. Angew. Chem. Int. Ed. 48, 1234–1238 (2009).

    Article  CAS  Google Scholar 

  6. Jordan, J. D., Landau, E. M. & Iyengar, R. Signaling networks: The origins of cellular multitasking. Cell 103, 193–200 (2000).

    Article  CAS  Google Scholar 

  7. Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. Application of magnetic nanoparticles in biomedicine. J. Phys. D 36, R167–R181 (2003).

    Article  CAS  Google Scholar 

  8. Gupta, A. K. & Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005).

    Article  CAS  Google Scholar 

  9. Huang, H., Delikanli, S., Zeng, H., Ferkey, D. M. & Pralle, A. Remote control of ion channels and neurons through magnetic-field heating of nanoparticles. Nature Nanotech. 5, 602–606 (2010).

    Article  CAS  Google Scholar 

  10. Creixell, M. et al. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. ACS Nano 5, 7124–7129 (2011).

    Article  CAS  Google Scholar 

  11. Wang, N., Butler, J. P. & Ingber, D. E. Mechanotransduction across the cell surface and through the cytoskeleton. Science 260, 1124–1127 (1993).

    Article  CAS  Google Scholar 

  12. Kanczler, J. M. et al. Controlled differentiation of human bone marrow stromal cells using magnetic nanoparticle technology. Tissue Eng. 16, 3241–3250 (2010).

    Article  CAS  Google Scholar 

  13. Hughes, S., Haj, A. J. E. & Dobson, J. Magnetic micro- and nanoparticle mediated activation of mechanosensitive ion channels. Med. Eng. Phys. 27, 754–762 (2005).

    Article  Google Scholar 

  14. Dobson, J. Remote control of cellular behavior with magnetic nanoparticles. Nature Nanotech. 3, 139–143 (2008).

    Article  CAS  Google Scholar 

  15. Mannix, R. J. et al. Nanomagnetic actuation of receptor-mediated signal transduction. Nature Nanotech. 3, 36–40 (2008).

    Article  CAS  Google Scholar 

  16. Lee, J-H. et al. Artificial control of cell signaling and growth by magnetic nanoparticles. Angew. Chem. Int. Ed. 49, 5698–5702 (2010).

    Article  CAS  Google Scholar 

  17. Danial, N. N. & Korsmeyer, S. J. Cell death: Critical control points. Cell 116, 205–219 (2004).

    Article  CAS  Google Scholar 

  18. Williams, G. T. Programmed cell death: Apoptosis and oncogenesis. Cell 65, 1097–1098 (1991).

    Article  CAS  Google Scholar 

  19. Storey, S. Targeting apoptosis: Selected anticancer strategies. Nature Rev. 7, 971–972 (2008).

    CAS  Google Scholar 

  20. Fulda, S. & Debatin, K-M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25, 4798–4811 (2006).

    Article  CAS  Google Scholar 

  21. Ashkenazi, A. Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nature Rev. Cancer 2, 420–430 (2002).

    Article  CAS  Google Scholar 

  22. Sayers, T. J. Targeting the extrinsic apoptosis signaling pathway for cancer therapy. Cancer Immunol. Immunother. 60, 1173–1180 (2011).

    Article  CAS  Google Scholar 

  23. Mahalingam, D., Szegezdi, E., Keane, M., Jong, S. de & Samali, A. TRAIL receptor signaling and modulation: Are we on the right TRAIL? Cancer Treat. Rev. 35, 280–288 (2009).

    Article  CAS  Google Scholar 

  24. Vondálová Blanárová, O. et al. Cisplatin and a potent platinum(IV) complex-mediated enhancement of TRAIL-induced cancer cells killing is associated with modulation of upstream events in the extrinsic apoptotic pathway. Carcinogenesis 32, 42–51 (2011).

    Article  Google Scholar 

  25. Schneider-Brachert, W. et al. Compartmentalization of TNF receptor 1 signaling: Internalized TNF receptosomes as death signaling vesicles. Immunity 21, 415–428 (2004).

    Article  CAS  Google Scholar 

  26. Kelley, S. K. & Ashkenazi, A. Targeting death receptors in cancer with Apo2L/TRAIL. Curr. Opin. Pharmacol. 4, 333–339 (2004).

    Article  CAS  Google Scholar 

  27. Ashkenazi, A. & Herbst, R. S. To kill a tumor cell: The potential of proapoptotic receptor agonists. J. Clin. Invest. 118, 1979–1990 (2008).

    Article  CAS  Google Scholar 

  28. Meeker, D. C. Finite element method magnetics. http://www.femm.info (accessed Feb 9, 2011).

  29. Türkcan, S. et al. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu3+-doped oxide nanoparticles. Biophys. J. 102, 2299–2308 (2012).

    Article  Google Scholar 

  30. Pralle, A., Keller, P., Florin, E-L., Simons, K. & Hörber, J. K. H. Sphingolipid-cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J. Cell Biol. 148, 997–1007 (2000).

    Article  CAS  Google Scholar 

  31. Porter, A. G. & Jänicke, R. U. Emerging roles of caspase-3 in apoptosis. Cell Death Differ. 6, 99–104 (1999).

    Article  CAS  Google Scholar 

  32. Pyati, U. J., Look, A. T. & Hammershmidt, M. Zebrafish as a powerful vertebrate model system for in vivo studies of cell death. Semin. Cancer Biol. 17, 154–165 (2007).

    Article  CAS  Google Scholar 

  33. Eimon, P. M. & Ashkenazi, A. The zebrafish as a model organism for the study of apoptosis. Apoptosis 15, 331–349 (2010).

    Article  Google Scholar 

  34. Yamashita, M. Apoptosis in zebrafish development. Comp. Biochem. Phys. B 136, 731–742 (2003).

    Article  Google Scholar 

  35. Eimon, P. M. et al. Delineation of the cell-extrinsic apoptosis pathway in the zebrafish. Cell Death Differ. 13, 1619–1630 (2006).

    Article  CAS  Google Scholar 

  36. Bobe, J. & Goetz, F. W. Molecular cloning and expression of a TNF receptor and two TNF ligands in the fish ovary. Comp. Biochem. Phys. B 129, 475–481 (2001).

    Article  CAS  Google Scholar 

  37. Matsuda, H. The current trends and future prospects of regenerative medicine in cardiovascular diseases. Asian Cardiovasc. Thorac. Ann. 13, 101–102 (2005).

    Article  Google Scholar 

  38. Oblak, A. & Jerala, R. Toll-like receptor 4 activation in cancer progression and therapy. Clin. Dev. Immunol. 475, 1–12 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by grants from the Creative Research Initiative (2010-0018286), WCU Program (R32-10217), National Research Foundation of Korea (2011-0017611) and the second stage BK21 for Chemistry and Medical Sciences of Yonsei University. S.W.P. was supported by the National Research Foundation, Mid-career Researcher Program (72011-0043). M.H.C. was supported by a Hi Seoul Science/Humanities Fellowship from the Seoul Scholarship Foundation.

Author information

Authors and Affiliations

Authors

Contributions

J.C. and J-S.S. conceived and designed the experiments. M.H.C., E.J.L., M.S. and J-w.K. performed the experiments. S.W.P. provided advice on the in vivo zebrafish experiments. M.H.C., E.J.L., J-H.L., D.Y., J-S.S. and J.C. wrote the manuscript.

Corresponding authors

Correspondence to Jeon-Soo Shin or Jinwoo Cheon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2910 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, M., Lee, E., Son, M. et al. A magnetic switch for the control of cell death signalling in in vitro and in vivo systems. Nature Mater 11, 1038–1043 (2012). https://doi.org/10.1038/nmat3430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing