Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical negative refraction by four-wave mixing in thin metallic nanostructures

Abstract

The law of refraction first derived by Snellius and later introduced as the Huygens–Fermat principle1, states that the incidence and refracted angles of a light wave at the interface of two different materials are related to the ratio of the refractive indices in each medium. Whereas all natural materials have a positive refractive index and therefore exhibit refraction in the positive direction, artificially engineered negative index metamaterials have been shown capable of bending light waves negatively2,3,4,5,6,7,8. Such a negative refractive index is the key to achieving a perfect lens that is capable of imaging well below the diffraction limit9,10,11. However, negative index metamaterials are typically lossy, narrow band, and require complicated fabrication processes. Recently, an alternative approach to obtain negative refraction from a very thin nonlinear film has been proposed12,13 and experimentally demonstrated in the microwave region14,15,16. However, such approaches use phase conjugation, which makes optical implementations difficult. Here, we report a simple but different scheme to demonstrate experimentally nonlinear negative refraction at optical frequencies using four-wave mixing in nanostructured metal films. The refractive index can be designed at will by simply tuning the wavelengths of the interacting waves, which could have potential impact on many important applications, such as superlens imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the degenerate 4WM process on a thin nonlinear film.
Figure 2: Fourier plane of the detected signals.
Figure 3: Four-wave mixing analysis.
Figure 4: Top view schematic of the experiment and the corresponding experimental images collected by a CCD positioned at the imaging plane.
Figure 5: Fourier plane images of the detected signal.

Similar content being viewed by others

References

  1. Huygens, C. Traité de la Lumiere (Pieter van der Aa, 1690).

    Google Scholar 

  2. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  CAS  Google Scholar 

  3. Lezec, H. J., Dionne, J. A. & Atwater, H. A. Negative refraction at visible frequencies. Science 316, 430–432 (2007).

    Article  CAS  Google Scholar 

  4. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article  CAS  Google Scholar 

  5. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  Google Scholar 

  6. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  Google Scholar 

  7. Dolling, G., Enkrich, C., Wegener, M., Soukoulis, C. M. & Linden, S. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).

    Article  CAS  Google Scholar 

  8. Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).

    Article  CAS  Google Scholar 

  9. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  CAS  Google Scholar 

  10. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  CAS  Google Scholar 

  11. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595–1595 (2006).

    Article  CAS  Google Scholar 

  12. Maslovski, S. & Tretyakov, S. Phase conjugation and perfect lensing. J. Appl. Phys. 94, 4241–4243 (2003).

    Article  CAS  Google Scholar 

  13. Pendry, J. B. Time reversal and negative refraction. Science 322, 71–73 (2008).

    Article  CAS  Google Scholar 

  14. Allen, C. A., Leong, K. M. K. H. & Itoh, T. A negative reflective/refractive meta-interface using a bi-directional phase-conjugating array. IEEE Int. Microw. Theory Tech. Symp. Dig. 3, 1875–1878 (2003).

    Google Scholar 

  15. Fusco, V. F. et al. Active phase conjugating lens with sub-wavelength resolution capability. IEEE Trans. Antennas Propag. 58, 798–808 (2010).

    Article  Google Scholar 

  16. Katko, A. R. et al. Phase conjugation and negative refraction using nonlinar active metamaterials. Phys. Rev. Lett. 105, 123905 (2010).

    Article  Google Scholar 

  17. Bloembergen, N. & Pershan, P. S. Light waves at the boundary of nonlinear media. Phys. Rev. 128, 606–622 (1962).

    Article  Google Scholar 

  18. Boyd, R. W. et al. (eds) Nonlinear Optics (Academic, 2003).

  19. Bartal, G., Manela, O. & Segev, M. Spatial four wave mixing in nonlinear periodic structures. Phys. Rev. Lett. 97, 073906 (2006).

    Article  Google Scholar 

  20. Smith, D. D. et al. z-scan measurement of the nonlinear absorption of a thin gold film. J. Appl. Phys. 86, 6200–6205 (1999).

    Article  CAS  Google Scholar 

  21. Klein, M. W., Enkrich, C., Wegener, M. & Linden, S. Second-harmonic generation from magnetic metamaterials. Science 313, 502–504 (2006).

    Article  CAS  Google Scholar 

  22. Renger, J., Quidant, R., van Hulst, N. & Novotny, L. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).

    Article  Google Scholar 

  23. Su, K. H., Wei, Q. H. & Zhang, X. Tunable and augmented plasmon resonances of Au/SiO2/Au nanodisks. Appl. Phys. Lett. 88, 063118 (2006).

    Article  Google Scholar 

  24. Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).

    Article  Google Scholar 

  25. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nature Mater. 2, 229–232 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding support from the US Army Research Office (MURI W911NF-09-1-0539).

Author information

Authors and Affiliations

Authors

Contributions

S.P. conducted the measurements. S.P. and S.Z. performed numerical simulations. Y.P. fabricated the samples. S.P., G.B., X.Y., S.Z. and X.Z. analysed the experimental data and wrote the manuscript. X.Z., X.Y. and G.B. guided the research. All authors contributed to discussions.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palomba, S., Zhang, S., Park, Y. et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nature Mater 11, 34–38 (2012). https://doi.org/10.1038/nmat3148

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3148

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing