Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anisotropic mechanical amorphization drives wear in diamond

Abstract

Diamond is the hardest material on Earth1. Nevertheless, polishing diamond is possible with a process that has remained unaltered for centuries and is still used for jewellery and coatings: the diamond is pressed against a rotating disc with embedded diamond grit2. When polishing polycrystalline diamond, surface topographies become non-uniform because wear rates depend on crystal orientations3. This anisotropy is not fully understood4 and impedes diamond’s widespread use in applications that require planar polycrystalline films, ranging from cutting tools5 to confinement fusion6. Here, we use molecular dynamics to show that polished diamond undergoes an sp3sp2 order–disorder transition resulting in an amorphous adlayer with a growth rate that strongly depends on surface orientation and sliding direction, in excellent correlation with experimental wear rates7. This anisotropy originates in mechanically steered dissociation of individual crystal bonds8. Similarly to other planarization processes9, the diamond surface is chemically activated by mechanical means. Final removal of the amorphous interlayer proceeds either mechanically or through etching by ambient oxygen10.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular dynamics simulation of diamond polishing.
Figure 2: Microscopic origin of the anisotropy.

Similar content being viewed by others

References

  1. Field, J. E. The Properties of Natural and Synthetic Diamond (Academic, 1992).

    Google Scholar 

  2. Tolkowsky, W. Research on the Abrading, Grinding or Polishing of Diamond. DSc Thesis, City and Guilds College, Univ. London (1920).

  3. El-Dasher, B. et al. Crystallographic anisotropy of wear on a polycrystalline diamond surface. Appl. Phys. Lett. 88, 241915 (2006).

    Article  Google Scholar 

  4. Hird, J. R. & Field, J. E. Diamond polishing. Proc. R. Soc. Lond. A 460, 3547–3568 (2004).

    Article  CAS  Google Scholar 

  5. May, P. W. Diamond thins films: A 21st-century material. Phil. Trans. R. Soc. Lond. A 358, 473–495 (2000).

    Article  CAS  Google Scholar 

  6. Biener, J. et al. Diamond spheres for inertial confinement fusion. Nucl. Fusion 49, 112001 (2009).

    Article  Google Scholar 

  7. Wilks, E. M. & Wilks, J. The resistance of diamond to abrasion. J. Phys. D 5, 1902–1919 (1972).

    Article  CAS  Google Scholar 

  8. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: The mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    Article  CAS  Google Scholar 

  9. Krishnan, M., Nalaskowski, J. W. & Cook, L. M. Chemical mechanical planarization: Slurry chemistry, materials, and mechanisms. Chem. Rev. 110, 178–204 (2010).

    Article  CAS  Google Scholar 

  10. Casari, C. S. et al. Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys. Rev. B 69, 075422 (2004).

    Article  Google Scholar 

  11. Grillo, S. E., Field, J. E. & van Bouwelen, F. M. Diamond polishing: The dependency of friction and wear on load and crystal orientation. J. Phys. D 33, 985–990 (2000).

    Article  CAS  Google Scholar 

  12. Couto, M. S., van Enckevort, W. J. P. & Seal, M. Diamond polishing mechanisms: An investigation by scanning tunnelling microscopy. Phil. Mag. B 69, 621–641 (1994).

    Article  CAS  Google Scholar 

  13. van Bouwelen, F. M., Bleloch, A. L., Field, J. E. & Brown, L. M. Wear by friction between diamonds studied by electron microscopical techniques. Diamond Relat. Mater. 5, 654–657 (1996).

    Article  CAS  Google Scholar 

  14. Konicek, A. R. et al. Origin of ultralow friction and wear in ultrananocrystalline diamond. Phys. Rev. Lett. 100, 235502 (2008).

    Article  CAS  Google Scholar 

  15. van Bouwelen, F. M. Diamond polishing from different angles. Diamond Relat. Mater. 9, 925–928 (2000).

    CAS  Google Scholar 

  16. van Bouwelen, F. M. & van Enckevort, W. J. P. A simple model to describe the anisotropy of diamond polishing. Diamond Relat. Mater. 8, 840–844 (1999).

    Article  CAS  Google Scholar 

  17. Harrison, J. A. & Brenner, D. W. Simulated tribochemistry: An atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994).

    Article  CAS  Google Scholar 

  18. Jarvis, M. R., Pérez, R., van Bouwelen, F. M. & Payne, M. C. Microscopic mechanism for mechanical polishing of diamond (110) surfaces. Phys. Rev. Lett. 80, 3428–3431 (1998).

    Article  CAS  Google Scholar 

  19. Hitchiner, M. P., Wilks, E. M. & Wilks, J. The polishing of diamond and diamond composite materials. Wear 94, 103–120 (1984).

    Article  Google Scholar 

  20. Thompson, P. A. & Robbins, M. O. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A 41, 6830–6837 (1990).

    Article  CAS  Google Scholar 

  21. Eyring, H. Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936).

    Article  CAS  Google Scholar 

  22. Butler, S. & Harrowell, P. Factors determining crystal-liquid coexistence under shear. Nature 415, 1008–1011 (2002).

    Article  CAS  Google Scholar 

  23. Herschel, W. H. & Bulkley, R. Konsistenzmessungen von Gummi–Benzollösungen. Kolloid Z. Z. Polym. 39, 291–300 (1926).

    Article  Google Scholar 

  24. Persson, B. N. J. Sliding Friction (Springer, 2001).

    Google Scholar 

  25. Rigney, D. A. & Karthikeyan, S. The evolution of tribomaterial during sliding: A brief introduction. Tribol. Lett. 39, 3–7 (2010).

    Article  Google Scholar 

  26. Gumbsch, P. & Cannon, R. M. Atomistic aspects of brittle fracture. MRS Bull. 25, 15–20 (2000).

    Article  CAS  Google Scholar 

  27. Angell, C. Formation of glasses from liquids and biopolymers. Science 267, 1924–1935 (1995).

    Article  CAS  Google Scholar 

  28. Williams, J. S. Materials modification with ion beams. Rep. Prog. Phys. 49, 491–587 (1986).

    Article  CAS  Google Scholar 

  29. Moseler, M., Gumbsch, P., Casiraghi, C., Ferrari, A. C. & Robertson, J. The ultrasmoothness of diamond-like carbon surfaces. Science 309, 1545–1548 (2005).

    Article  CAS  Google Scholar 

  30. Meng, H. C. & Ludema, K. C. Wear models and predictive equations: Their form and content. Wear 181/183, 443–457 (1995).

    Article  Google Scholar 

  31. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter. 14, 783–802 (2002).

    Article  CAS  Google Scholar 

  32. Pastewka, L., Pou, P., Pérez, R., Gumbsch, P. & Moseler, M. Describing bond-breaking processes by reactive potentials: Importance of an environment-dependent interaction range. Phys. Rev. B 78, 161402(R) (2008).

    Article  Google Scholar 

  33. Pastewka, L., Moser, S. & Moseler, M. Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010).

    Article  CAS  Google Scholar 

  34. Peters, E. A. J. F. Elimination of time step effects in DPD. Europhys. Lett. 66, 311–317 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the BMBF (project OTRISKO) and the Deutsche Forschungsgemeinschaft (Gu 367/30).

Author information

Authors and Affiliations

Authors

Contributions

L.P., P.G. and M.M. designed the study, developed the amorphization model and wrote the paper. L.P. and S.M. carried out molecular dynamics simulations.

Corresponding author

Correspondence to Michael Moseler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pastewka, L., Moser, S., Gumbsch, P. et al. Anisotropic mechanical amorphization drives wear in diamond. Nature Mater 10, 34–38 (2011). https://doi.org/10.1038/nmat2902

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2902

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing