Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
Gold nanoclusters show promise as photothermal materials, but are often thermally unstable. Here ligand engineering is used to integrate molecular rotors with gold nanoclusters to dissipate thermal energy and improve photothermal therapy performance.
Liquid electrolytes in batteries are considered to be macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures. A micelle-like structure in a localized high-concentration electrolyte for which the solvent acts as a surfactant is reported.
Employing a miniaturized spectrometer that combines a metasurface-based spectrometer array and a metalens, angle-resolved spectral imaging is achieved with a wavelength accuracy of 0.17 nm, spectral resolution of 0.40 nm and angular resolution of 4.88 × 10−3 rad for a spectrometer with a 4 × 4 μm2 footprint.
The rational design and assembly of colloidal quasicrystals is achieved by exploring the hybridization of nanoscale decahedra nanoparticles functionalized with DNA linkers.
Multi-metal and perovskite oxides are attractive as oxygen evolution electrocatalysts, and thus far the most promising candidates have emerged from experimental methodologies. Active-learning models supplemented by structural-characterization data and closed-loop experimentation can now identify a perovskite oxide with outstanding performance.
Pseudo-halide anion engineering is an effective surface passivation strategy for perovskite-based optoelectronics but the large chemical space of molecules limits its potential. Here, the authors create a machine learning workflow to find optimized pseudo-halide anions, which are verified in devices with improved performances.
A dilute water–polymer mixture exhibits a percolation-induced gel–gel phase separation, resulting in a two gel co-continuous substrate, which is used for adipose tissue development.
Chiral single-photon emitters are desirable, versatile tools for quantum information processing. Exploiting proximity to a strain-induced local magnetic field in the van der Waals antiferromagnet NiPS3 enables the emission of high-purity chiral single photons from monolayer WSe2 at zero external magnetic field.
An approach to analyse the deformation behaviour of polymer networks provides an enhanced set of structural information, improving our understanding of the elasticity of soft materials.
Terahertz photoconductivity measurements coupled with theoretical modelling reveals that thermal transient excitations to more delocalized states enhances hole mobility in organic molecular semiconductors.
Lymphatic vessels within and near to tumours facilitate nanoparticle transport out of tumours, with ramifications in the design and implementation of next-generation clinical cancer nanomedicines.
Xiaodong Chen, a professor at Nanyang Technological University (School of Materials Science and Engineering), talks to Nature Materials about how innovations in materials science and technology are paving the way for a more sustainable future in electronics.
Production of bulk bicontinuous materials is limited by the ability to make uniform microarchitectures across large volumes. Here elastic microphase separation is used to fabricate bicontinuous materials with a homogeneous microstructure, with feature sizes tuned by the matrix stiffness.
Simultaneously highly elastic and deformable gels that maintain their mechanical properties have remained elusive. Here, using in situ polymerization confined within nanochannels, the authors prepare hysteresis-free gels insensitive to crack propagation.
The production of ammonia via the Haber–Bosch process is carbon-intensive and centralized, but electrochemical methods such as lithium-mediated processes in organic electrolytes could enable decentralized production using renewable energy. Calcium is now shown to mediate nitrogen reduction for ammonia synthesis.
An essential part of developing organic mixed ionic–electronic conducting materials and organic electrochemical transistors is consistent and standardized reporting of the product of charge carrier mobility and volumetric capacitance, the μC* product. This Comment argues that unexpected changes in transistor channel resistance can overestimate this figure of merit, leading to a confusion of comparisons in the literature.