Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
and JavaScript.
A general method by controlling reaction kinetics is proposed to synthesize 67 kinds of two-dimensional crystal with custom-made phases and compositions, in particular, Fe- and Cr-based (layered and non-layered) chalcogenides and phosphorous chalcogenides, which show interesting ferromagnetism and superconductivity properties.
A competitive-chemical-reaction-based growth mechanism by controlling the kinetic parameters can easily realize the growth of transition metal chalcogenides and transition metal phosphorous chalcogenides with different compositions and phases.
Understanding reversible anionic redox reactions is key to designing high-energy-density cathodes for lithium-ion batteries. Anionic redox activation in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 is shown to involve intermediate Ni3+/4+ species that can evolve to Ni2+ during relaxation.
The authors use scanning tunnelling microscopy and spectroscopy to visualize the electronic structure of mirror twin boundaries, revealing a Tomonaga–Luttinger liquid.
The authors show that an out-of-plane antidamping spin–orbit torque can produce a sizeable change in the switching dynamics of a magnetic layer with perpendicular anisotropy.
Distinct electronic and optical properties emerge from quantum confinement in low-dimensional materials. Here, combining optical characterization and ab initio calculations, the authors report an unconventional excitonic state and bound phonon sideband in layered silicon diphosphide.
A design paradigm to create robust robotic metamaterials using versatile gear clusters is demonstrated. It enables intriguing programmability of elastic properties and shape while preserving stability for intelligent machines.
The realization of large-scale exciton–polariton platforms operating at room temperature and exhibiting long-lived, strongly interacting excitons has been elusive. Here, the authors demonstrate a room-temperature perovskite-based polaritonic platform with a polariton lattice size of up to 10 × 10.
Electrostatic capacitors can enable ultrafast energy storage and release, but advances in energy density and efficiency need to be made. Here, by doping equimolar Zr, Hf and Sn into Bi4Ti3O12 thin films, a high-entropy stabilized Bi2Ti2O7 pyrochlore phase forms with an energy density of 182 J cm−3 and 78% efficiency.
Here the authors fabricate a fibre-coupled electrode ‘fibertrode’ that integrates light emission sites and platinum microelectrodes on tapered optical fibre neural implants, for combined stimulation and recording of neural activity over small brain volumes in vivo with reduced photoelectric artefacts.
The growth of lithium dendrites across electrolyte layers limits the practical viability of solid-state Li-ion batteries. A direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with metallic interlayers is now observed.
Outstanding resistance to destructive radiation damage in structural alloys is realized by ultra-high-density reversible nanoprecipitate inclusions, and the improvement is attributed to the reordering process of low-misfit superlattices in highly supersaturated matrices.
Using high-pressure synthesis, perovskite antimonates have been realized with enhanced charge density wave gap and superconducting transition temperatures up to 15 K.
Twisted monolayer–multilayer graphene superlattices present bi-stable reconstruction states, with reversible switch in-between and long-distance propagation triggered by local mechanical perturbation. This provides additional degrees of freedom for moiré engineering.
Materials scientists have played a key role in the global response to the COVID-19 pandemic from the development of vaccines and diagnostic tools to the rapid prototyping of ventilators.
A temporal modulation protocol enriches topological Floquet physics by enabling the realization of bimorphic Floquet systems where Chern and anomalous Floquet phases coexist in a single platform of laser-written waveguides.
The cycling disordering–ordering transition of low-misfit superlattice nanoprecipitates in metallic materials continuously annihilates radiation defects via a short-range atom-reshuffling process, giving rise to high radiation tolerance.
The performance of organic optoelectronic and energy-harvesting devices is largely dictated by molecular orientation and resultant permanent dipole moment. Here, the authors demonstrate a strategy to actively control dipole direction in organic glassy films.