Nature Materials Nature Materials is a multidisciplinary journal aimed at bringing together cutting-edge research across the entire spectrum of materials science and technology. Nature Materials covers all applied and fundamental aspects of the synthesis/processing, structure/composition, properties and performance of materials. Nature Materials provides a forum for the development of a common identity among materials scientists while encouraging researchers to cross established subdisciplinary lines. To achieve this, Nature Materials takes an interdisciplinary, integrated and balanced approach to all areas of materials research while fostering the exchange of ideas between scientists involved in different communities. http://feeds.nature.com/nmat/rss/current Nature Publishing Group en © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. Nature Materials © 2024 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. permissions@nature.com Nature Materials https://www.nature.com/uploads/product/nmat/rss.gif http://feeds.nature.com/nmat/rss/current <![CDATA[Diving into interlayer confinement]]> https://www.nature.com/articles/s41563-024-01850-y Nature Materials, Published online: 28 March 2024; doi:10.1038/s41563-024-01850-y

Noble gas atoms sandwiched in bilayer graphene are directly visualized with scanning transmission electron microscopy, revealing solid and liquid-like dynamics of two-dimensional cluster structures at room temperature under encapsulation.]]>
Tao XuLitao Sun doi:10.1038/s41563-024-01850-y Nature Materials, Published online: 2024-03-28; | doi:10.1038/s41563-024-01850-y 2024-03-28 Nature Materials 10.1038/s41563-024-01850-y https://www.nature.com/articles/s41563-024-01850-y
<![CDATA[Publisher Correction: Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations]]> https://www.nature.com/articles/s41563-024-01878-0 Nature Materials, Published online: 27 March 2024; doi:10.1038/s41563-024-01878-0

Publisher Correction: Unlocking Li superionic conductivity in face-centred cubic oxides via face-sharing configurations]]>
Yu ChenZhengyan LunXinye ZhaoKrishna Prasad KoiralaLinze LiYingzhi SunChristopher A. O’KeefeXiaochen YangZijian CaiChongmin WangHuiwen JiClare P. GreyBin OuyangGerbrand Ceder doi:10.1038/s41563-024-01878-0 Nature Materials, Published online: 2024-03-27; | doi:10.1038/s41563-024-01878-0 2024-03-27 Nature Materials 10.1038/s41563-024-01878-0 https://www.nature.com/articles/s41563-024-01878-0
<![CDATA[Phase patterning of liquid crystal elastomers by laser-induced dynamic crosslinking]]> https://www.nature.com/articles/s41563-024-01845-9 Nature Materials, Published online: 26 March 2024; doi:10.1038/s41563-024-01845-9

Lack of local phase patterning in liquid crystal elastomers has hindered their broad implementation. The authors report a laser-induced dynamic crosslinking approach with allyl sulfide groups to achieve reconfigurable high-resolution patterning of multiple liquid crystalline phases in a single film.]]>
Seok Hwan ChoiJu Hee KimJiyong AhnTaegyeom KimYeongju JungDaeyeon WonJunhyuk BangKyung Rok PyunSeongmin JeongHyunsu KimYoung Gyu KimSeung Hwan Ko doi:10.1038/s41563-024-01845-9 Nature Materials, Published online: 2024-03-26; | doi:10.1038/s41563-024-01845-9 2024-03-26 Nature Materials 10.1038/s41563-024-01845-9 https://www.nature.com/articles/s41563-024-01845-9
<![CDATA[Author Correction: Local atomic stacking and symmetry in twisted graphene trilayers]]> https://www.nature.com/articles/s41563-024-01868-2 Nature Materials, Published online: 22 March 2024; doi:10.1038/s41563-024-01868-2

Author Correction: Local atomic stacking and symmetry in twisted graphene trilayers]]>
Isaac M. CraigMadeline Van WinkleCatherine GroschnerKaidi ZhangNikita DowlatshahiZiyan ZhuTakashi TaniguchiKenji WatanabeSinéad M. GriffinD. Kwabena Bediako doi:10.1038/s41563-024-01868-2 Nature Materials, Published online: 2024-03-22; | doi:10.1038/s41563-024-01868-2 2024-03-22 Nature Materials 10.1038/s41563-024-01868-2 https://www.nature.com/articles/s41563-024-01868-2
<![CDATA[Electrocaloric effects at a phase transition created by strain]]> https://www.nature.com/articles/s41563-024-01836-w Nature Materials, Published online: 21 March 2024; doi:10.1038/s41563-024-01836-w

Electrocaloric effects have not hitherto been experimentally studied at a phase transition created by strain. It is now shown that the continuous transition created by epitaxial strain in strontium titanate films greatly enhances electrocaloric effects over a wide range of temperatures, including room temperature.]]>
doi:10.1038/s41563-024-01836-w Nature Materials, Published online: 2024-03-21; | doi:10.1038/s41563-024-01836-w 2024-03-21 Nature Materials 10.1038/s41563-024-01836-w https://www.nature.com/articles/s41563-024-01836-w
<![CDATA[Effect of pre-intercalation on Li-ion diffusion mapped by topochemical single-crystal transformation and operando investigation]]> https://www.nature.com/articles/s41563-024-01842-y Nature Materials, Published online: 21 March 2024; doi:10.1038/s41563-024-01842-y

Pre-intercalation with alkali-metal ions is attractive for accessing higher reversible capacity and improved rate performance in Li-ion batteries. Topochemical single-crystal transformations in a tunnel-structured positive electrode are used to clarify the effect of pre-intercalation in modifying the host lattice and altering diffusion pathways.]]>
Yuting LuoJoseph V. HandyTisita DasJohn D. PonisRyan AlbersYu-Hsiang ChiangMatt PharrBrian J. SchultzLeonardo GobbatoDean C. BrownSudip ChakrabortySarbajit Banerjee doi:10.1038/s41563-024-01842-y Nature Materials, Published online: 2024-03-21; | doi:10.1038/s41563-024-01842-y 2024-03-21 Nature Materials 10.1038/s41563-024-01842-y https://www.nature.com/articles/s41563-024-01842-y
<![CDATA[Highly reversible extrinsic electrocaloric effects over a wide temperature range in epitaxially strained SrTiO<sub>3</sub> films]]> https://www.nature.com/articles/s41563-024-01831-1 Nature Materials, Published online: 21 March 2024; doi:10.1038/s41563-024-01831-1

Electrocaloric effects are large in a limited set of materials that display hysteretic first-order phase transitions. Here epitaxial SrTiO3 thin films are strain engineered to achieve anhysteretic second-order phase transitions, with electrocaloric effects enhanced by one order of magnitude over bulk.]]>
3 films]]> S. ZhangJ. Deliyore-RamírezS. DengB. NairD. PesqueraQ. JingM. E. VickersS. CrossleyM. GhidiniG. G. Guzmán-VerriX. MoyaN. D. Mathur doi:10.1038/s41563-024-01831-1 Nature Materials, Published online: 2024-03-21; | doi:10.1038/s41563-024-01831-1 2024-03-21 Nature Materials 10.1038/s41563-024-01831-1 https://www.nature.com/articles/s41563-024-01831-1
<![CDATA[Creep-free polyelectrolyte elastomer for drift-free iontronic sensing]]> https://www.nature.com/articles/s41563-024-01848-6 Nature Materials, Published online: 21 March 2024; doi:10.1038/s41563-024-01848-6

Conventional iontronic pressure sensors suffer from signal drift and inaccuracy owing to creep of soft materials and ion leakage. Here the authors report a leakage-free and creep-free polyelectrolyte-elastomer-based iontronic sensor that achieves a drift rate two to three orders of magnitude lower than those of conventional iontronic sensors.]]>
Yunfeng HeYu ChengCanhui YangChuan Fei Guo doi:10.1038/s41563-024-01848-6 Nature Materials, Published online: 2024-03-21; | doi:10.1038/s41563-024-01848-6 2024-03-21 Nature Materials 10.1038/s41563-024-01848-6 https://www.nature.com/articles/s41563-024-01848-6