Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Engineered antibodies

Engineered antibodies now represent over 30% of biopharmaceuticals in clinical trials, as highlighted by recent approvals from the US Food and Drug Administration. Recombinant antibodies have been reduced in size, rebuilt into multivalent molecules and fused with, for example radionuclides, toxins, enzymes, liposomes and viruses. The emergence of recombinant technologies has revolutionized the selection, humanization and production of antibodies, superseding hybridoma technology and allowing the design of antibody-based reagents of any specificity and for very diverse purposes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of an intact Ig together with Fab and Fv fragments and single V (colored ovals; dots represent antigen-binding sites) and C domains (uncolored).
Figure 2: Affinity maturation cycles.

References

  1. Milstein, C. With the benefit of hindsight. Immunol. Today 21, 359–364 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Carter, P. Improving the efficacy of antibody-based cancer therapies. Nat. Rev. Cancer 1, 118–129 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Hudson, P.J. & Souriau, C. Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 1, 845–855 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Wiseman, G.A. et al. Radiation dosimetry results for Zevalin radioimmunotherapy of rituximab-refractory non-Hodgkin lymphoma. Cancer 94, 1349–1357 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Clynes, R.A., Towers, T.L., Presta, L.G. & Ravetch, J.V. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat. Med. 6, 443–446 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Ober, R.J., Radu, C.G., Ghetie, V. & Ward, E.S. Differences in promiscuity for antibody–FcRn interactions across species: implications for therapeutic antibodies. Int. Immunol. 13, 1551–1559 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. He, Y. et al. Efficient isolation of novel human monoclonal antibodies with neutralizing activity against HIV-1 from transgenic mice expressing human Ig loci. J. Immunol. 169, 595–605 (2002).

    Article  CAS  PubMed  Google Scholar 

  8. Goel, A. et al. 99mTc-labeled divalent and tetravalent CC49 single-chain Fvs: novel imaging agents for rapid in vivo localization of human colon carcinoma. J. Nucl. Med. 42, 1519–1527 (2001).

    CAS  PubMed  Google Scholar 

  9. Adams, G.P. et al. High affinity restricts the localization and tumor penetration of single-chain Fv antibody molecules. Cancer Res. 61, 4750–4755 (2001).

    CAS  PubMed  Google Scholar 

  10. Tomlinson, I. & Holliger, P. Methods for generating multivalent and bispecific antibody fragments. Methods Enzymol. 326, 461–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Todorovska, A. et al. Design and application of diabodies, triabodies and tetrabodies for cancer targeting. J. Immunol. Methods 248, 47–66 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen, U.B., Adams, G.P., Weiner, L.M. & Marks, J.D. Targeting of bivalent anti-ErbB2 diabody antibody fragments to tumor cells is independent of the intrinsic antibody affinity. Cancer Res. 60, 6434–6440 (2000).

    CAS  PubMed  Google Scholar 

  13. Tahtis, K. et al. Biodistribution properties of indium-111-labeled C-functionalized trans-cyclohexyl diethylenetriaminepentaacetic acid humanized 3S193 diabody and F(ab′)2 constructs in a breast carcinoma xenograft model. Clin. Cancer Res. 7, 1061–1072 (2001).

    CAS  PubMed  Google Scholar 

  14. Yazaki, P.J. et al. Tumor targeting of radiometal-labeled anti-CEA recombinant T84.66 diabody and t84.66 minibody: comparison to radioiodinated fragments. Bioconjug. Chem. 12, 220–228 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Gura, T. Therapeutic antibodies: magic bullets hit the target. Nature 417, 584–586 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Izumi, Y., Xu, L., di Tomaso, E., Fukumura, D. & Jain, R.K. Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature 416, 279–280 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Cardarelli, P.M. et al. Binding to CD20 by anti-B1 antibody or F(ab′)2 is sufficient for induction of apoptosis in B-cell lines. Cancer Immunol. Immunother. 51, 15–24 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. Goldenberg, D.M. Targeted therapy of cancer with radiolabeled antibodies. J. Nucl. Med. 43, 693–713 (2002).

    CAS  PubMed  Google Scholar 

  19. Casey, J.L. et al. Tumour targeting of humanised cross-linked divalent-Fab′ antibody fragments: a clinical phase I/II study. Br. J. Cancer 86, 1401–1410 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Leong, S.R. et al. Adapting pharmacokinetic properties of a humanized anti-interleukin-8 antibody for therapeutic applications using site-specific pegylation. Cytokine 16, 106–119 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Fujioka, Y. et al. Renal metabolism of 3′-iodohippuryl Nε-maleoyl-L-lysine (HML)-conjugated Fab fragments. Bioconjug. Chem. 12, 178–185 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Kim, M.K. et al. Improved renal clearance and tumor targeting of 99mTc-labeled anti-Tac monoclonal antibody Fab by chemical modifications. Nucl. Med. Biol. 29, 139–146 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Segal, D.M., Weiner, G.J. & Weiner, L.M. Introduction: bispecific antibodies. J. Immunol. Methods 248, 1–6 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Carter, P. Bispecific human IgG by design. J. Immunol. Methods 248, 7–15 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Kipriyanov, S.M. et al. Synergistic antitumor effect of bispecific CD19 × CD3 and CD19 × CD16 diabodies in a preclinical model of non-Hodgkin's lymphoma. J. Immunol. 169, 137–144 (2002).

    Article  CAS  PubMed  Google Scholar 

  26. Chester, K.A. et al. Clinical applications of phage-derived sFvs and sFv fusion proteins. Dis. Markers 16, 53–62 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rippmann, J.F., Pfizenmaier, K., Mattes, R., Rettig, W.J. & Moosmayer, D. Fusion of the tissue factor extracellular domain to a tumor stroma-specific single-chain fragment variable antibody results in an antigen-specific coagulation-promoting molecule. Biochem. J. 349 (Pt. 3), 805–812 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kreitman, R.J. Toxin-labeled monoclonal antibodies. Curr. Pharm. Biotechnol. 2, 313–325 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Rybak, S.M. & Newton, D.L. Antibody targeted therapeutics for lymphoma: new focus on the CD22 antigen and RNA. Expert Opin. Biol. Ther. 1, 995–1003 (2001).

    Article  Google Scholar 

  30. van Beusechem, V.W. et al. Efficient and selective gene transfer into primary human brain tumors by using single-chain antibody-targeted adenoviral vectors with native tropism abolished. J. Virol. 76, 2753–2762 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Park, J.W. et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8, 1172–1181 (2002).

    CAS  PubMed  Google Scholar 

  32. Shi, N., Boado, R.J. & Pardridge, W.M. Receptor-mediated gene targeting to tissues in vivo following intravenous administration of pegylated immunoliposomes. Pharm. Res. 18, 1091–1095 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Kousparou, C.A., Epenetos, A.A. & Deonarain, M.P. Antibody-guided enzyme therapy of cancer producing cyanide results in necrosis of targeted cells. Int. J. Cancer 99, 138–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. O'Connell, D., Becerril, B., Roy-Burman, A., Daws, M. & Marks, J.D. Phage versus phagemid libraries for generation of human monoclonal antibodies. J. Mol. Biol. 321, 49–56 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Hoogenboom, H.R. & Chames, P. Natural and designer binding sites made by phage display technology. Immunol. Today 21, 371–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Krebs, B. et al. High-throughput generation and engineering of recombinant human antibodies. J. Immunol. Methods 254, 67–84 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Nagy, Z.A. et al. Fully human, HLA-DR-specific monoclonal antibodies efficiently induce programmed death of malignant lymphoid cells. Nat. Med. 8, 801–807 (2002).

    Article  CAS  PubMed  Google Scholar 

  38. Poul, M.A., Becerril, B., Nielsen, U.B., Morisson, P. & Marks, J.D. Selection of tumor-specific internalizing human antibodies from phage libraries. J. Mol. Biol. 301, 1149–1161 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Hanes, J., Schaffitzel, C., Knappik, A. & Pluckthun, A. Picomolar affinity antibodies from a fully synthetic naive library selected and evolved by ribosome display. Nat. Biotechnol. 18, 1287–1292 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Huie, M.A. et al. Antibodies to human fetal erythroid cells from a nonimmune phage antibody library. Proc. Natl. Acad. Sci. USA 98, 2682–2687 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, B., Huang, L., Sihlbom, C., Burlingame, A. & Marks, J.D. Towards proteome-wide production of monoclonal antibody by phage display. J. Mol. Biol. 315, 1063–1073 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Willemsen, R.A. et al. A phage display-selected Fab fragment with MHC class I-restricted specificity for MAGE-A1 allows for retargeting of primary human T lymphocytes. Gene Ther. 8, 1601–1608 (2001).

    Article  CAS  PubMed  Google Scholar 

  43. de Wildt, R.M., Tomlinson, I.M., Ong, J.L. & Holliger, P. Isolation of receptor–ligand pairs by capture of long-lived multivalent interaction complexes. Proc. Natl. Acad. Sci. USA 99, 8530–8535 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wilson, D.S., Keefe, A.D. & Szostak, J.W. The use of mRNA display to select high-affinity protein-binding peptides. Proc. Natl. Acad. Sci. USA 98, 3750–3755 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Irving, R.A., Coia, G., Roberts, A., Nuttall, S.D. & Hudson, P.J. Ribosome display and affinity maturation: from antibodies to single V-domains and steps towards cancer therapeutics. J. Immunol. Methods 248, 31–45 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Weng, S. et al. Generating addressable protein microarrays with PROfusion covalent mRNA–protein fusion technology. Proteomics 2, 48–57 (2002).

    Article  CAS  PubMed  Google Scholar 

  47. Xu, L. et al. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9, 933 (2002).

  48. Boder, E.T., Midelfort, K.S. & Wittrup, K.D. Directed evolution of antibody fragments with monovalent femtomolar antigen-binding affinity. Proc. Natl. Acad. Sci. USA 97, 10701–10705 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Daugherty, P.S., Iverson, B.L. & Georgiou, G. Flow cytometric screening of cell-based libraries. J. Immunol. Methods 243, 211–227 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. de Graaf, M., van der Meulen-Muileman, I.H., Pinedo, H.M. & Haisma, H.J. Expression of scFvs and scFv fusion proteins in eukaryotic cells. Methods Mol. Biol. 178, 379–387 (2002).

    CAS  PubMed  Google Scholar 

  51. Powers, D.B. et al. Expression of single-chain Fv–Fc fusions in Pichia pastoris. J. Immunol. Methods 251, 123–135 (2001).

    Article  CAS  PubMed  Google Scholar 

  52. Neuberger, M.S. et al. Diversification and selection mechanisms for the production of protein repertoires: lessons from the immune system. Appl. Biochem. Biotechnol. 83, 53–60 (2000).

    Article  CAS  PubMed  Google Scholar 

  53. Wu, H. et al. Stepwise in vitro affinity maturation of Vitaxin, an αvβ3-specific humanized mAb. Proc. Natl. Acad. Sci. USA 95, 6037–6042 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kurtzman, A.L. et al. Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr. Opin. Biotechnol. 12, 361–370 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. van der Linden, R.H., de Geus, B., Frenken, G.J., Peters, H. & Verrips, C.T. Improved production and function of llama heavy chain antibody fragments by molecular evolution. J. Biotechnol. 80, 261–270 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Poltoratsky, V. et al. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl. Acad. Sci. USA 98, 7976–7981 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Saphire, E.O. et al. Crystal structure of a neutralizing human IgG against HIV-1: a template for vaccine design. Science 293, 1155–1159 (2001).

    Article  CAS  PubMed  Google Scholar 

  58. Desmyter, A., Decanniere, K., Muyldermans, S. & Wyns, L. Antigen specificity and high-affinity binding provided by one single loop of a camel single-domain antibody. J. Biol. Chem. 276, 26285–26290 (2001).

    Article  CAS  PubMed  Google Scholar 

  59. Ewert, S., Cambillau, C., Conrath, K. & Pluckthun, A. Biophysical properties of camelid V(HH) domains compared to those of human V(H)3 domains. Biochemistry 41, 3628–3636 (2002).

    Article  CAS  PubMed  Google Scholar 

  60. Nuttall, S.D. et al. Isolation of the new antigen receptor from wobbegong sharks, and use as a scaffold for the display of protein loop libraries. Mol. Immunol. 38, 313–326 (2001).

    Article  CAS  PubMed  Google Scholar 

  61. van den Beucken, T. et al. Building novel binding ligands to B7.1 and B7.2 based on human antibody single variable light chain domains. J. Mol. Biol. 310, 591–601 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Muyldermans, S. Single-domain camel antibodies: current status. J. Biotechnol. 74, 277–302 (2001).

    CAS  PubMed  Google Scholar 

  63. Peretz, D. et al. Antibodies inhibit prion propagation and clear cell cultures of prion infectivity. Nature 412, 739–743 (2001).

    Article  CAS  PubMed  Google Scholar 

  64. Meanwell, N.A. & Krystal, M. Respiratory syncytial virus: recent progress towards the discovery of effective prophylactic and therapeutic agents. Drug Discov. Today 5, 241–252 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Parren, P.W. & Burton, D.R. The antiviral activity of antibodies in vitro and in vivo. Adv. Immunol. 77, 195–262 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Maynard, J.A. et al. Protection against anthrax toxin by recombinant antibody fragments correlates with antigen affinity. Nat. Biotechnol. 20, 597–601 (2002).

    Article  CAS  PubMed  Google Scholar 

  67. Nowakowski, A. et al. Potent neutralization of botulinum neurotoxin by recombinant oligoclonal antibody. Proc. Natl. Acad. Sci. USA 99, 11346–11350 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Lecerf, J.M. et al. Human single-chain Fv intrabodies counteract in situ huntingtin aggregation in cellular models of Huntington's disease. Proc. Natl. Acad. Sci. USA 98, 4764–4769 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mhashilkar, A.M. et al. Intrabody-mediated phenotypic knockout of major histocompatibility complex class I expression in human and monkey cell lines and in primary human keratinocytes. Gene Ther. 9, 307–319 (2002).

    Article  CAS  PubMed  Google Scholar 

  70. Arafat, W. et al. Antineoplastic effect of anti-erbB-2 intrabody is not correlated with scFv affinity for its target. Cancer Gene Ther. 7, 1250–1256 (2000).

    Article  CAS  PubMed  Google Scholar 

  71. Cochet, O. et al. Intracellular expression of an antibody fragment-neutralizing p21 ras promotes tumor regression. Cancer Res. 58, 1170–1176 (1998).

    CAS  PubMed  Google Scholar 

  72. Goncalves, J. et al. Functional neutralization of HIV-1 Vif protein by intracellular immunization inhibits reverse transcription and viral replication. J. Biol. Chem. 30, 32036–32045 (2002).

    Article  Google Scholar 

  73. Worn, A. et al. Correlation between in vitro stability and in vivo performance of anti-GCN4 intrabodies as cytoplasmic inhibitors. J. Biol. Chem. 275, 2795–2803 (2000).

    Article  CAS  PubMed  Google Scholar 

  74. Tse, E. et al. Intracellular antibody capture technology: application to selection of intracellular antibodies recognising the BCR-ABL oncogenic protein. J. Mol. Biol. 317, 85–94 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Visintin, M. et al. The intracellular antibody capture technology (IACT): towards a consensus sequence for intracellular antibodies. J. Mol. Biol. 317, 73–83 (2002).

    Article  CAS  PubMed  Google Scholar 

  76. Sanz, L. et al. Single-chain antibody-based gene therapy: inhibition of tumor growth by in situ production of phage-derived human antibody fragments blocking functionally active sites of cell-associated matrices. Gene Ther. 9, 1049–1053 (2002).

    Article  CAS  PubMed  Google Scholar 

  77. Marty, C. et al. Cytotoxic targeting of F9 teratocarcinoma tumours with anti-ED-B fibronectin scFv antibody modified liposomes. Br. J. Cancer 87, 106–112 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Eshhar, Z., Waks, T., Bendavid, A. & Schindler, D.G. Functional expression of chimeric receptor genes in human T cells. J. Immunol. Methods 248, 67–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  79. thor Straten, P. et al. In situ cytokine therapy: redistribution of clonally expanded T cells. Eur. J. Immunol. 31, 250–258 (2001).

    Article  CAS  PubMed  Google Scholar 

  80. Lunde, E., Western, K.H., Rasmussen, I.B., Sandlie, I. & Bogen, B. Efficient delivery of T cell epitopes to APC by use of MHC class II-specific Troybodies. J. Immunol. 168, 2154–2162 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Robinson, W.H. et al. Autoantigen microarrays for multiplex characterization of autoantibody responses. Nat. Med. 8, 295–301 (2002).

    Article  CAS  PubMed  Google Scholar 

  82. The Journal of the American Medical Association. Bioterrorism articles. http://pubs.ama-assn.org/bioterr.html.

Download references

Acknowledgements

We thank many colleagues at CSIRO and the CRC for their helpful contributions, and especially B. Mason and K. Wark for their assistance with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Hudson.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, P., Souriau, C. Engineered antibodies. Nat Med 9, 129–134 (2003). https://doi.org/10.1038/nm0103-129

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0103-129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing