Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress

Abstract

Cisplatin and its platinum analogs, carboplatin and oxaliplatin, are some of the most widely used cancer chemotherapeutics. Although cisplatin and carboplatin are used primarily in germ cell, breast and lung malignancies, oxaliplatin is instead used almost exclusively to treat colorectal and other gastrointestinal cancers. Here we utilize a unique, multi-platform genetic approach to study the mechanism of action of these clinically established platinum anti-cancer agents, as well as more recently developed cisplatin analogs. We show that oxaliplatin, unlike cisplatin and carboplatin, does not kill cells through the DNA-damage response. Rather, oxaliplatin kills cells by inducing ribosome biogenesis stress. This difference in drug mechanism explains the distinct clinical implementation of oxaliplatin relative to cisplatin, and it might enable mechanistically informed selection of distinct platinum drugs for distinct malignancies. These data highlight the functional diversity of core components of front-line cancer therapy and the potential benefits of applying a mechanism-based rationale to the use of our current arsenal of anti-cancer drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RNAi signatures identify a spectrum of platinum-drug activities.
Figure 2: Sensitivity profiles of the indicated platinum drugs on a panel of the repair-deficient DT40 mutants.
Figure 3: Phenanthriplatin and oxaliplatin exhibit distinct differences from cisplatin in cell-cycle profiles, γ-H2AX and p53 signaling in Eμ-Myc Cdkn2aArf−/− cells.
Figure 4: Immunofluorescence of γ-H2AX and comet assays reveal lack of DNA damage resulting from oxaliplatin and phenanthriplatin treatment in Eμ-Myc Cdkn2aArf−/−cells.
Figure 5: Oxaliplatin and phenanthriplatin induce ribosome biogenesis stress.
Figure 6: Evidence for sensitization to oxaliplatin in 'translation-addicted' cell lines and primary tumors.

Similar content being viewed by others

References

  1. Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 7, 573–584 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Chu, E. & v DeVita Jr, V.T. Physician's Cancer Chemotherapy Drug Manual (Jones & Bartlett Learning Oncology, Sudbury, 2008).

  3. Rixe, O. et al. Oxaliplatin, tetraplatin, cisplatin, and carboplatin: spectrum of activity in drug-resistant cell lines and in the cell lines of the National Cancer Institute's Anticancer Drug Screen panel. Biochem. Pharmacol. 52, 1855–1865 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Machover, D. et al. Two consecutive phase II studies of oxaliplatin (L-OHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann. Oncol. 7, 95–98 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Jiang, H., Pritchard, J.R., Williams, R.T., Lauffenburger, D.A. & Hemann, M.T. A mammalian functional-genetic approach to characterizing cancer therapeutics. Nat. Chem. Biol. 7, 92–100 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Pritchard, J.R. et al. Defining principles of combination drug mechanisms of action. Proc. Natl. Acad. Sci. USA 110, E170–E179 (2013).

    Article  PubMed  Google Scholar 

  7. Pritchard, J.R., Bruno, P.M., Hemann, M.T. & Lauffenburger, D.A. Predicting cancer drug mechanisms of action using molecular network signatures. Mol. Biosyst. 9, 1604–1619 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Suntharalingam, K. et al. Bidentate ligands on osmium(VI) nitrido complexes control intracellular targeting and cell death pathways. J. Am. Chem. Soc. 135, 14060–14063 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Suntharalingam, K. et al. A breast cancer stem cell-selective, mammospheres-potent osmium(VI) nitrido complex. J. Am. Chem. Soc. 136, 14413–14416 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Suntharalingam, K. et al. Necroptosis-inducing rhenium(V) oxo complexes. J. Am. Chem. Soc. 137, 2967–2974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Awuah, S.G., Zheng, Y.-R., Bruno, P.M., Hemann, M.T. & Lippard, S.J.A. Pt(IV) pro-drug preferentially targets indoleamine-2,3-dioxygenase, providing enhanced ovarian cancer immuno-chemotherapy. J. Am. Chem. Soc. 137, 14854–14857 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Boodram, J.N. et al. Breast cancer stem cell potent copper(II)-non-steroidal anti-inflammatory drug complexes. Angew. Chem. Int. Ed.Engl. 55, 2845–2850 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Cressey, P.B. et al. The potent inhibitory effect of a naproxen-appended cobalt(III)-cyclam complex on cancer stem cells. ChemBioChem 17, 1713–1718 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Zheng, Y.-R. et al. Mechanistic studies of the anticancer activity of an octahedral hexanuclear Pt(II) cage. Inorganica Chim. Acta 452, 125–129 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barnes, J.C. et al. Using an RNAi signature assay to guide the design of three-drug-conjugated nanoparticles with validated mechanisms, in vivo efficacy, and low toxicity. J. Am. Chem. Soc. 138, 12494–12501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zamble, D.B., Mu, D., Reardon, J.T., Sancar, A. & Lippard, S.J. Repair of cisplatin—DNA adducts by the mammalian excision nuclease. Biochemistry 35, 10004–10013 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Fojo, T. et al. Identification of non-cross-resistant platinum compounds with novel cytotoxicity profiles using the NCI anticancer drug screen and clustered image map visualizations. Crit. Rev. Oncol. Hematol. 53, 25–34 (2005).

    Article  PubMed  Google Scholar 

  18. Alvarez, M. et al. Generation of a drug resistance profile by quantitation of mdr-1/P-glycoprotein in the cell lines of the National Cancer Institute Anticancer Drug Screen. J. Clin. Invest. 95, 2205–2214 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Willett, P., Barnard, J.M. & Downs, G.M. Chemical similarity searching. J. Chem. Inf. Comput. Sci. 38, 983–996 (1998).

    Article  CAS  Google Scholar 

  20. Williams, R.T., Roussel, M.F. & Sherr, C.J. Arf gene loss enhances oncogenicity and limits imatinib response in mouse models of Bcr-Abl-induced acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 103, 6688–6693 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Maede, Y. et al. Differential and common DNA repair pathways for topoisomerase I- and II-targeted drugs in a genetic DT40 repair cell screen panel. Mol. Cancer Ther. 13, 214–220 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Jiang, H. et al. The combined status of ATM and p53 link tumor development with therapeutic response. Genes Dev. 23, 1895–1909 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogakou, E.P., Nieves-Neira, W., Boon, C., Pommier, Y. & Bonner, W.M. Initiation of DNA fragmentation during apoptosis induces phosphorylation of H2AX histone at serine 139. J. Biol. Chem. 275, 9390–9395 (2000).

    Article  CAS  PubMed  Google Scholar 

  24. Bonner, W.M. et al. GammaH2AX and cancer. Nat. Rev. Cancer 8, 957–967 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Olive, P.L. & Banáth, J.P. The comet assay: a method to measure DNA damage in individual cells. Nat. Protoc. 1, 23–29 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Golomb, L., Volarevic, S. & Oren, M. p53 and ribosome biogenesis stress: the essentials. FEBS Lett. 588, 2571–2579 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Boulon, S., Westman, B.J., Hutten, S., Boisvert, F.M. & Lamond, A.I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109, 413–418 (2012).

    Article  PubMed  Google Scholar 

  29. Bliss, C.I. The calculation of microbial assays. Bacteriol. Rev. 20, 243–258 (1956).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinhold, W.C. et al. CellMiner: a web-based suite of genomic and pharmacologic tools to explore transcript and drug patterns in the NCI-60 cell line set. Cancer Res. 72, 3499–3511 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  32. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  33. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 474, 609–615 (2011).

  35. Muzny, D.M. et al.; Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330–337 (2012).

    Article  CAS  Google Scholar 

  36. Faller, W.J. et al. mTORC1-mediated translational elongation limits intestinal tumour initiation and growth. Nature 517, 497–500 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. Koboldt, D.C. et al. Comprehensive molecular portraits of human breast tumours. Nature 490, 61–70 (2012).

    Article  CAS  Google Scholar 

  38. Raymond, E., Chaney, S.G., Taamma, A. & Cvitkovic, E. Oxaliplatin: a review of preclinical and clinical studies. Ann. Oncol. 9, 1053–1071 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Raymond, E., Lawrence, R., Izbicka, E., Faivre, S. & Von Hoff, D.D. Activity of oxaliplatin against human tumor colony-forming units. Clin. Cancer Res. 4, 1021–1029 (1998).

    CAS  PubMed  Google Scholar 

  40. Shelley, M.D., Burgon, K. & Mason, M.D. Treatment of testicular germ-cell cancer: a cochrane evidence-based systematic review. Cancer Treat. Rev. 28, 237–253 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Goldberg, R.M. et al. A randomized controlled trial of fluorouracil plus leucovorin, irinotecan, and oxaliplatin combinations in patients with previously untreated metastatic colorectal cancer. J. Clin. Oncol. 22, 23–30 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Raez, L.E. et al. Efficacy and safety of oxaliplatin and docetaxel in patients with locally advanced and metastatic non-small-cell lung cancer (NSCLC). Lung Cancer 53, 347–353 (2006).

    Article  PubMed  Google Scholar 

  43. Atmaca, A. et al. A randomised multicentre phase II study with cisplatin/docetaxel vs oxaliplatin/docetaxel as first-line therapy in patients with advanced or metastatic non-small cell lung cancer. Br. J. Cancer 108, 265–270 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Scagliotti, G.V. et al. Pemetrexed combined with oxaliplatin or carboplatin as first-line treatment in advanced non-small cell lung cancer: a multicenter, randomized, phase II trial. Clin. Cancer Res. 11, 690–696 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Yardley, D.A. et al. A phase II trial of oxaliplatin and trastuzumab in the treatment of HER2-positive metastatic breast cancer. Cancer Invest. 28, 865–871 (2010).

    Article  CAS  PubMed  Google Scholar 

  46. Njiaju, U.O. et al. Capecitabine and oxaliplatin in combination as first- or second-line therapy for metastatic breast cancer: a Wisconsin Oncology Network trial. Cancer Chemother. Pharmacol. 71, 613–618 (2013).

    Article  CAS  PubMed  Google Scholar 

  47. Guerrero, A. et al. Phase I/II study of biweekly vinorelbine and oxaliplatin as first-line treatment in patients with metastatic breast cancer. Anticancer Drugs 22, 283–289 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Meijers-Heijboer, H. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat. Genet. 31, 55–59 (2002).

    Article  CAS  PubMed  Google Scholar 

  50. Samimi, G. et al. cDNA microarray-based identification of genes and pathways associated with oxaliplatin resistance. Cancer Chemother. Pharmacol. 55, 1–11 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Kim, M.K. et al. Characterization of an oxaliplatin sensitivity predictor in a preclinical murine model of colorectal cancer. Mol. Cancer Ther. 11, 1500–1509 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bertucci, F. et al. Gene expression profiling of colon cancer by DNA microarrays and correlation with histoclinical parameters. Oncogene 23, 1377–1391 (2004).

    Article  CAS  PubMed  Google Scholar 

  53. Arango, D. et al. Gene-expression profiling predicts recurrence in Dukes' C colorectal cancer. Gastroenterology 129, 874–884 (2005).

    Article  CAS  PubMed  Google Scholar 

  54. Barrier, A. et al. Stage II colon cancer prognosis prediction by tumor gene expression profiling. J. Clin. Oncol. 24, 4685–4691 (2006).

    Article  CAS  PubMed  Google Scholar 

  55. Yamasaki, M. et al. The gene expression profile represents the molecular nature of liver metastasis in colorectal cancer. Int. J. Oncol. 30, 129–138 (2007).

    CAS  PubMed  Google Scholar 

  56. Bandrés, E. et al. A gene signature of 8 genes could identify the risk of recurrence and progression in Dukes' B colon cancer patients. Oncol. Rep. 17, 1089–1094 (2007).

    PubMed  Google Scholar 

  57. Fritzmann, J. et al. A colorectal cancer expression profile that includes transforming growth factor beta inhibitor BAMBI predicts metastatic potential. Gastroenterology 137, 165–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Zoncu, R., Efeyan, A. & Sabatini, D.M. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat. Rev. Mol. Cell Biol. 12, 21–35 (2011).

    Article  CAS  PubMed  Google Scholar 

  59. Voss, M.H. et al. Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin. Cancer Res. 20, 1955–1964 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Spranger, S., Bao, R. & Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015).

    Article  CAS  PubMed  Google Scholar 

  61. Woynarowski, J.M. et al. Oxaliplatin-induced damage of cellular DNA. Mol. Pharmacol. 58, 920–927 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Burger, K. et al. Chemotherapeutic drugs inhibit ribosome biogenesis at various levels. J. Biol. Chem. 285, 12416–12425 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Dickins, R.A. et al. Probing tumor phenotypes using stable and regulated synthetic microRNA precursors. Nat. Genet. 37, 1289–1295 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Zuber, J. et al. Toolkit for evaluating genes required for proliferation and survival using tetracycline-regulated RNAi. Nat. Biotechnol. 29, 79–83 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, B., Pritchard, J.R., Lauffenburger, D.A. & Hemann, M.T. Addressing genetic tumor heterogeneity through computationally predictive combination therapy. Cancer Discov. 4, 166–174 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Park, G.Y., Wilson, J.J., Song, Y. & Lippard, S.J. Phenanthriplatin, a monofunctional DNA-binding platinum anticancer drug candidate with unusual potency and cellular activity profile. Proc. Natl. Acad. Sci. USA 109, 11987–11992 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Koch Institute Frontier Research Program through the Michael (1957) and Inara Erdei Fund and the Kathy and Curt Marble Cancer Research Fund, by the Koch Institute Support (core) Grant P30-CA14051 from the National Cancer Institute, by National Cancer Institute Grant CA034992 (S.J.L.), by the Integrative Cancer Biology Program grant #U54-CA112967-09 and by the Center of Cancer Research, the Intramural Program of the National Cancer Institute, NIH (Z01 BC006150-19). M.T.H. is the Chang and Eisen Associate Professor of Biology, C.E.K. was supported by award Number T32GM007753 from the National Institute of General Medical Sciences and G.Y.P. was supported by a Misrock Postdoctoral Fellowship. The authors would also like to thank the Koch Institute Swanson Biotechnology Center for technical support, specifically G. Paradis of the Flow Cytometry Core Facility. We thank J. Wilson for providing platinum compounds ([Pt(tfbz)(NH3)2](NO3)) and [Pt(acac)(NH3)2](SO4)0.5) and D. Bartel for advice and discussion regarding translation and ribosome translation experiments. The authors also thank G. Walker, A. Koehler, E. Bent, C. Braun, E. Kreidl and B. Zhao for comments and discussion on the paper and N. Fenouille, H. Criscione and F. Lam for technical assistance. The authors thank S. Takeda and M. Takata (Kyoto University, Japan) for providing us with the mutant DT40 cell lines used in this study. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of General Medical Sciences or the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

P.M.B., Y.L., G.Y.P., T.J.E., J.R.P., Y.P., S.J.L. and M.T.H. conceived the idea for the research, designed experiments and interpreted data. P.M.B., Y.L. and C.E.K. performed experiments. P.M.B. and Y.L. performed bioinformatic analyses. J.M. performed DT40 sensitivity profiles. T.J.E. performed polysome gradient profiling. P.M.B., S.J.L. and M.T.H. wrote the paper.

Corresponding authors

Correspondence to Stephen J Lippard or Michael T Hemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–19 and Supplementary Tables 1–10 (PDF 4054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruno, P., Liu, Y., Park, G. et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. Nat Med 23, 461–471 (2017). https://doi.org/10.1038/nm.4291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.4291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing