Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome

Abstract

Down syndrome (DS) is the most frequent genetic cause of intellectual disability, and altered GABAergic transmission through Cl-permeable GABAA receptors (GABAARs) contributes considerably to learning and memory deficits in DS mouse models. However, the efficacy of GABAergic transmission has never been directly assessed in DS. Here GABAAR signaling was found to be excitatory rather than inhibitory, and the reversal potential for GABAAR-driven Cl currents (ECl) was shifted toward more positive potentials in the hippocampi of adult DS mice. Accordingly, hippocampal expression of the cation Cl cotransporter NKCC1 was increased in both trisomic mice and individuals with DS. Notably, NKCC1 inhibition by the FDA-approved drug bumetanide restored ECl, synaptic plasticity and hippocampus-dependent memory in adult DS mice. Our findings demonstrate that GABA is excitatory in adult DS mice and identify a new therapeutic approach for the potential rescue of cognitive disabilities in individuals with DS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CA1 hippocampal pyramidal neurons exhibit excitatory responses to exogenous and endogenous GABA in adult Ts65Dn mice.
Figure 2: Hippocampal CA1 neurons exhibit a less negative ECl in adult Ts65Dn mice than in adult WT mice.
Figure 3: NKCC1 protein expression is increased in the hippocampi of Ts65Dn mice and in samples from human subjects with DS.
Figure 4: Bath application of the FDA-approved NKCC1 inhibitor bumetanide rescues the deficit in hippocampal CA3–CA1 LTP in Ts65Dn mice.
Figure 5: Systemic treatment with bumetanide restores cognitive function in behavioral tasks in Ts65Dn mice.
Figure 6: Effect of bumetanide on memory does not depend on changes in neuronal connectivity.

Similar content being viewed by others

References

  1. Dierssen, M. Down syndrome: the brain in trisomic mode. Nat. Rev. Neurosci. 13, 844–858 (2012).

    CAS  PubMed  Google Scholar 

  2. Reeves, R.H. et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat. Genet. 11, 177–184 (1995).

    CAS  PubMed  Google Scholar 

  3. Costa, A.C. & Grybko, M.J. Deficits in hippocampal CA1 LTP induced by TBS but not HFS in the Ts65Dn mouse: a model of Down syndrome. Neurosci. Lett. 382, 317–322 (2005).

    CAS  PubMed  Google Scholar 

  4. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411–413 (2007).

    CAS  PubMed  Google Scholar 

  5. Costa, A.C., Scott-McKean, J.J. & Stasko, M.R. Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 33, 1624–1632 (2008).

    CAS  PubMed  Google Scholar 

  6. Chakrabarti, L. et al. Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat. Neurosci. 13, 927–934 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Kleschevnikov, A.M. et al. Hippocampal long-term potentiation suppressed by increased inhibition in the Ts65Dn mouse, a genetic model of Down syndrome. J. Neurosci. 24, 8153–8160 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Kleschevnikov, A.M. et al. Increased efficiency of the GABAA and GABAB receptor-mediated neurotransmission in the Ts65Dn mouse model of Down syndrome. Neurobiol. Dis. 45, 683–691 (2012).

    CAS  PubMed  Google Scholar 

  9. Costa, A.C. & Scott-McKean, J.J. Prospects for improving brain function in individuals with Down syndrome. CNS Drugs 27, 679–702 (2013).

    CAS  PubMed  Google Scholar 

  10. Braudeau, J. et al. Specific targeting of the GABA-A receptor alpha5 subtype by a selective inverse agonist restores cognitive deficits in Down syndrome mice. J. Psychopharmacol. 25, 1030–1042 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Szemes, M., Davies, R.L., Garden, C.L. & Usowicz, M.M. Weaker control of the electrical properties of cerebellar granule cells by tonically active GABAA receptors in the Ts65Dn mouse model of Down's syndrome. Mol. Brain 6, 33 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Best, T.K., Cramer, N.P., Chakrabarti, L., Haydar, T.F. & Galdzicki, Z. Dysfunctional hippocampal inhibition in the Ts65Dn mouse model of Down syndrome. Exp. Neurol. 233, 749–757 (2012).

    CAS  PubMed  Google Scholar 

  13. Mitra, A., Blank, M. & Madison, D.V. Developmentally altered inhibition in Ts65Dn, a mouse model of Down syndrome. Brain Res. 1440, 1–8 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hanson, J.E., Blank, M., Valenzuela, R.A., Garner, C.C. & Madison, D.V. The functional nature of synaptic circuitry is altered in area CA3 of the hippocampus in a mouse model of Down's syndrome. J. Physiol. (Lond.) 579, 53–67 (2007).

    CAS  Google Scholar 

  15. Harashima, C. et al. Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: a model of Down syndrome. J. Comp. Neurol. 494, 815–833 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cancedda, L., Fiumelli, H., Chen, K. & Poo, M.M. Excitatory GABA action is essential for morphological maturation of cortical neurons in vivo. J. Neurosci. 27, 5224–5235 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Deidda, G., Bozarth, I.F. & Cancedda, L. Modulation of GABAergic transmission in development and neurodevelopmental disorders: investigating physiology and pathology to gain therapeutic perspectives. Front. Cell. Neurosci. 8, 119 (2014).

    PubMed  PubMed Central  Google Scholar 

  18. Ward, O.C. & Lam, L.K. Bumetanide in heart failure in infancy. Arch. Dis. Child. 52, 877–882 (1977).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Maa, E.H., Kahle, K.T., Walcott, B.P., Spitz, M.C. & Staley, K.J. Diuretics and epilepsy: will the past and present meet? Epilepsia 52, 1559–1569 (2011).

    CAS  PubMed  Google Scholar 

  20. Fiumelli, H., Cancedda, L. & Poo, M.M. Modulation of GABAergic transmission by activity via postsynaptic Ca2+-dependent regulation of KCC2 function. Neuron 48, 773–786 (2005).

    CAS  PubMed  Google Scholar 

  21. Doyon, N. et al. Efficacy of synaptic inhibition depends on multiple, dynamically interacting mechanisms implicated in chloride homeostasis. PLoS Comput. Biol. 7, e1002149 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Succol, F., Fiumelli, H., Benfenati, F., Cancedda, L. & Barberis, A. Intracellular chloride concentration influences the GABAA receptor subunit composition. Nat. Commun. 3, 738 (2012).

    PubMed  Google Scholar 

  23. Rissman, R.A. & Mobley, W.C. Implications for treatment: GABAA receptors in aging, Down syndrome and Alzheimer's disease. J. Neurochem. 117, 613–622 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Pueschel, S.M., Louis, S. & McKnight, P. Seizure disorders in Down syndrome. Arch. Neurol. 48, 318–320 (1991).

    CAS  PubMed  Google Scholar 

  25. Westmark, C.J., Westmark, P.R. & Malter, J.S. Alzheimer's disease and Down syndrome rodent models exhibit audiogenic seizures. J. Alzheimers Dis. 20, 1009–1013 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Danglot, L., Triller, A. & Marty, S. The development of hippocampal interneurons in rodents. Hippocampus 16, 1032–1060 (2006).

    CAS  PubMed  Google Scholar 

  27. Alger, B.E. Gating of GABAergic inhibition in hippocampal pyramidal cells. Ann. NY Acad. Sci. 627, 249–263 (1991).

    CAS  PubMed  Google Scholar 

  28. Usowicz, M.M. & Garden, C.L. Increased excitability and altered action potential waveform in cerebellar granule neurons of the Ts65Dn mouse model of Down syndrome. Brain Res. 1465, 10–17 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wlodarczyk, A.I. et al. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons. Front. Neural Circuits 7, 205 (2013).

    PubMed  PubMed Central  Google Scholar 

  30. Jean-Xavier, C., Mentis, G.Z., O'Donovan, M.J., Cattaert, D. & Vinay, L. Dual personality of GABA/glycine-mediated depolarizations in immature spinal cord. Proc. Natl. Acad. Sci. USA 104, 11477–11482 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, I., Savtchenko, L. & Semyanov, A. Tonic excitation or inhibition is set by GABAA conductance in hippocampal interneurons. Nat. Commun. 2, 376 (2011).

    PubMed  Google Scholar 

  32. Duchon, A. et al. Identification of the translocation breakpoints in the Ts65Dn and Ts1Cje mouse lines: relevance for modeling Down syndrome. Mamm. Genome 22, 674–684 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Lemonnier, E. et al. A randomised controlled trial of bumetanide in the treatment of autism in children. Transl. Psychiatry 2, e202 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ward, A. & Heel, R.C. Bumetanide. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic use. Drugs 28, 426–464 (1984).

    CAS  PubMed  Google Scholar 

  35. Puskarjov, M., Kahle, K.T., Ruusuvuori, E. & Kaila, K. Pharmacotherapeutic targeting of cation-chloride cotransporters in neonatal seizures. Epilepsia 55, 806–818 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Li, Y. et al. Sensitive isotope dilution liquid chromatography/tandem mass spectrometry method for quantitative analysis of bumetanide in serum and brain tissue. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 879, 998–1002 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Cleary, R.T. et al. Bumetanide enhances phenobarbital efficacy in a rat model of hypoxic neonatal seizures. PLoS One 8, e57148 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Deidda, G. et al. Early depolarizing GABA controls critical-period plasticity in the rat visual cortex. Nat. Neurosci. 18, 87–96 (2015).

    CAS  PubMed  Google Scholar 

  39. Dzhala, V.I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005).

    CAS  PubMed  Google Scholar 

  40. Sipilä, S.T., Schuchmann, S., Voipio, J., Yamada, J. & Kaila, K. The cation-chloride cotransporter NKCC1 promotes sharp waves in the neonatal rat hippocampus. J. Physiol. 573, 765–773 (2006).

    PubMed  PubMed Central  Google Scholar 

  41. Kahle, K.T., Barnett, S.M., Sassower, K.C. & Staley, K.J. Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1. J. Child Neurol. 24, 572–576 (2009).

    PubMed  Google Scholar 

  42. Mazarati, A., Shin, D. & Sankar, R. Bumetanide inhibits rapid kindling in neonatal rats. Epilepsia 50, 2117–2122 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Edwards, D.A. et al. Bumetanide alleviates epileptogenic and neurotoxic effects of sevoflurane in neonatal rat brain. Anesthesiology 112, 567–575 (2010).

    CAS  PubMed  Google Scholar 

  44. Lemonnier, E. & Ben-Ari, Y. The diuretic bumetanide decreases autistic behaviour in five infants treated during 3 months with no side effects. Acta Paediatr. 99, 1885–1888 (2010).

    PubMed  Google Scholar 

  45. Lemonnier, E. et al. Treating Fragile X syndrome with the diuretic bumetanide: a case report. Acta Paediatr. 102, e288–e290 (2013).

    PubMed  Google Scholar 

  46. Tyzio, R. et al. Oxytocin-mediated GABA inhibition during delivery attenuates autism pathogenesis in rodent offspring. Science 343, 675–679 (2014).

    CAS  PubMed  Google Scholar 

  47. Hadjikhani, N. et al. Improving emotional face perception in autism with diuretic bumetanide: a proof-of-concept behavioral and functional brain imaging pilot study. Autism 19, 149–157 (2013).

    PubMed  Google Scholar 

  48. Mares, P. Age- and dose-specific anticonvulsant action of bumetanide in immature rats. Physiol. Res. 58, 927–930 (2009).

    CAS  PubMed  Google Scholar 

  49. Brandt, C., Nozadze, M., Heuchert, N., Rattka, M. & Loscher, W. Disease-modifying effects of phenobarbital and the NKCC1 inhibitor bumetanide in the pilocarpine model of temporal lobe epilepsy. J. Neurosci. 30, 8602–8612 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang, D.D. & Kriegstein, A.R. Blocking early GABA depolarization with bumetanide results in permanent alterations in cortical circuits and sensorimotor gating deficits. Cereb. Cortex 21, 574–587 (2011).

    PubMed  Google Scholar 

  51. Validus Pharmaceuticals Bumex: brand of bumetanide tablets. Drugs@FDA: FDA Approved Drug Products http://www.accessdata.fda.gov/drugsatfda_docs/label/2010/018225s024lbl.pdf (2008).

  52. Pentikäinen, P.J., Penttilä, A., Neuvonen, P. & Gothoni, G. Fate of [14C]-bumetanide in man. Br. J. Clin. Pharmacol. 4, 39–44 (1977).

    PubMed  PubMed Central  Google Scholar 

  53. Ostergaard, E.H., Magnussen, M.P., Nielsen, C.K., Eilertsen, E. & Frey, H.H. Pharmacological properties of 3-n-butylamino-4-phenoxy-5-sulfamylbenzoic acid (Bumetanide), a new potent diuretic. Arzneimittelforschung 22, 66–72 (1972).

    CAS  PubMed  Google Scholar 

  54. Löscher, W., Puskarjov, M. & Kaila, K. Cation-chloride cotransporters NKCC1 and KCC2 as potential targets for novel antiepileptic and antiepileptogenic treatments. Neuropharmacology 69, 62–74 (2013).

    PubMed  Google Scholar 

  55. Strittmatter, S.M. Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks. Nat. Med. 20, 590–591 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. He, Q., Nomura, T., Xu, J. & Contractor, A. The developmental switch in GABA polarity is delayed in fragile X mice. J. Neurosci. 34, 446–450 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ehninger, D. et al. Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat. Med. 14, 843–848 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Han, S. et al. Autistic-like behaviour in Scn1a+/− mice and rescue by enhanced GABA-mediated neurotransmission. Nature 489, 385–390 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Castrén, E., Elgersma, Y., Maffei, L. & Hagerman, R. Treatment of neurodevelopmental disorders in adulthood. J. Neurosci. 32, 14074–14079 (2012).

    PubMed  PubMed Central  Google Scholar 

  60. Contestabile, A. et al. Lithium rescues synaptic plasticity and memory in Down syndrome mice. J. Clin. Invest. 123, 348–361 (2013).

    CAS  PubMed  Google Scholar 

  61. Peça, J. et al. Shank3 mutant mice display autistic-like behaviours and striatal dysfunction. Nature 472, 437–442 (2011).

    PubMed  PubMed Central  Google Scholar 

  62. Verkman, A.S., Sellers, M.C., Chao, A.C., Leung, T. & Ketcham, R. Synthesis and characterization of improved chloride-sensitive fluorescent indicators for biological applications. Anal. Biochem. 178, 355–361 (1989).

    CAS  PubMed  Google Scholar 

  63. Westmark, C.J. et al. Reversal of fragile X phenotypes by manipulation of AbetaPP/Abeta levels in Fmr1KO mice. PLoS ONE 6, e26549 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Peterson, S.L. & Albertson, T.E. Neuropharmacology Methods in Epilepsy Research (CRC Press, 1998).

  65. Hallett, P.J., Collins, T.L., Standaert, D.G. & Dunah, A.W. Biochemical fractionation of brain tissue for studies of receptor distribution and trafficking. Curr. Protoc. Neurosci. Chapter 1, Unit 1.16 (2008).

  66. Thomas-Crusells, J., Vieira, A., Saarma, M. & Rivera, C. A novel method for monitoring surface membrane trafficking on hippocampal acute slice preparation. J. Neurosci. Methods 125, 159–166 (2003).

    CAS  PubMed  Google Scholar 

  67. Bustin, S.A. et al. The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622 (2009).

    CAS  PubMed  Google Scholar 

  68. Pozzi, D. et al. REST/NRSF-mediated intrinsic homeostasis protects neuronal networks from hyperexcitability. EMBO J. 32, 2994–3007 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, RESEARCH0034 (2002).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Compagnia di San Paolo (grant 2008.1267 to L.C.) and the Jerome Lejeune Foundation (grants 995-CA2012A, to A.C., and 1266_CL2014A, to L.C.). Human Down syndrome and control samples were obtained from the Brain and Tissue Bank for Developmental Disorders at the University of Maryland, Baltimore. We thank F. Benfenati (Istituto Italiano di Tecnologia (IIT)) for financial support, J. Assad (IIT) for critical reading of the manuscript, M. Pesce (IIT NBT imaging facility) for technical assistance with two-photon microscopy and the staff of the IIT animal facility and genotyping service for their valuable work. We also thank K. Kaila (University of Helsinki, Helsinki, Finland) for providing brain tissue from NKCC1-deficient and KCC2-deficient mice.

Author information

Authors and Affiliations

Authors

Contributions

G.D. and S.N. collected and analyzed the electrophysiology data. M.P. collected and analyzed the behavioral data. G.D. prepared the figures. A.C. collected and analyzed the biochemical data. I.F.B. performed animal treatments and collaborated with M.P. on AGS experiments. L.C. and A.C. designed the experiments and wrote the manuscript. All authors read and revised the manuscript.

Corresponding authors

Correspondence to Andrea Contestabile or Laura Cancedda.

Ethics declarations

Competing interests

A.C. and L.C. are named as co-inventors on International Patent Application PCT/EP2014/078561, filed on December 18, 2014, claiming priority over US Provisional Application US 61/919,195, priority date December 20, 2013.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13 and Supplementary Tables 1–5 (PDF 3045 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deidda, G., Parrini, M., Naskar, S. et al. Reversing excitatory GABAAR signaling restores synaptic plasticity and memory in a mouse model of Down syndrome. Nat Med 21, 318–326 (2015). https://doi.org/10.1038/nm.3827

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3827

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing