Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice

Abstract

Emerging evidence suggests that inflammation provides a link between obesity and insulin resistance. The noncanonical IκB kinases IKK-ɛ and TANK-binding kinase 1 (TBK1) are induced in liver and fat by NF-κB activation upon high-fat diet feeding and in turn initiate a program of counterinflammation that preserves energy storage. Here we report that amlexanox, an approved small-molecule therapeutic presently used in the clinic to treat aphthous ulcers and asthma, is an inhibitor of these kinases. Treatment of obese mice with amlexanox elevates energy expenditure through increased thermogenesis, producing weight loss, improved insulin sensitivity and decreased steatosis. Because of its record of safety in patients, amlexanox may be an interesting candidate for clinical evaluation in the treatment of obesity and related disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induction of IKK-ɛ and TBK1 in obese mice is a result of increased inflammation.
Figure 2: Amlexanox is a specific inhibitor of IKK-ɛ and TBK1.
Figure 3: Daily amlexanox gavage both prevents and reverses diet-induced or genetic obesity.
Figure 4: Amlexanox treatment improves insulin sensitivity and glucose tolerance.
Figure 5: Amlexanox treatment reverses hepatic steatosis.
Figure 6: Amlexanox reduces inflammation and increases energy expenditure in adipose tissue.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Taniguchi, C.M., Emanuelli, B. & Kahn, C.R. Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7, 85–96 (2006).

    Article  CAS  PubMed  Google Scholar 

  2. Reaven, G.M. The insulin resistance syndrome: definition and dietary approaches to treatment. Annu. Rev. Nutr. 25, 391–406 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Reaven, G.M. Why Syndrome X? From Harold Himsworth to the insulin resistance syndrome. Cell Metab. 1, 9–14 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Stumvoll, M., Goldstein, B.J. & van Haeften, T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 365, 1333–1346 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Biddinger, S.B. & Kahn, C.R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Doria, A., Patti, M.E. & Kahn, C.R. The emerging genetic architecture of type 2 diabetes. Cell Metab. 8, 186–200 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Olefsky, J.M. & Glass, C.K. Macrophages, inflammation, and insulin resistance. Annu. Rev. Physiol. 72, 219–246 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Li, P. et al. Functional heterogeneity of CD11c-positive adipose tissue macrophages in diet-induced obese mice. J. Biol. Chem. 285, 15333–15345 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lumeng, C.N. & Saltiel, A.R. Inflammatory links between obesity and metabolic disease. J. Clin. Invest. 121, 2111–2117 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gregor, M.F. & Hotamisligil, G.S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Hotamisligil, G.S. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140, 900–917 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wunderlich, F.T. et al. Hepatic NF-κB essential modulator deficiency prevents obesity-induced insulin resistance but synergizes with high-fat feeding in tumorigenesis. Proc. Natl. Acad. Sci. USA 105, 1297–1302 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Arkan, M.C. et al. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191–198 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. Goldfine, A.B. et al. The effects of salsalate on glycemic control in patients with type 2 diabetes: a randomized trial. Ann. Intern. Med. 152, 346–357 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chiang, S.H. et al. The protein kinase IKKɛ regulates energy balance in obese mice. Cell 138, 961–975 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chau, T.L. et al. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 33, 171–180 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Chariot, A. The NF-κB–independent functions of IKK subunits in immunity and cancer. Trends Cell Biol. 19, 404–413 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Kawai, T. & Akira, S. Signaling to NF-κB by Toll-like receptors. Trends Mol. Med. 13, 460–469 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Kravchenko, V.V., Mathison, J.C., Schwamborn, K., Mercurio, F. & Ulevitch, R.J. IKKi/IKKɛ plays a key role in integrating signals induced by pro-inflammatory stimuli. J. Biol. Chem. 278, 26612–26619 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Makino, H., Saijo, T., Ashida, Y., Kuriki, H. & Maki, Y. Mechanism of action of an antiallergic agent, amlexanox (AA-673), in inhibiting histamine release from mast cells. Acceleration of cAMP generation and inhibition of phosphodiesterase. Int. Arch. Allergy Appl. Immunol. 82, 66–71 (1987).

    Article  CAS  PubMed  Google Scholar 

  21. Bell, J. Amlexanox for the treatment of recurrent aphthous ulcers. Clin. Drug Investig. 25, 555–566 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Saltiel, A.R. Insulin resistance in the defense against obesity. Cell Metab. 15, 798–804 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lumeng, C.N., Deyoung, S.M. & Saltiel, A.R. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins. Am. J. Physiol. Endocrinol. Metab. 292, E166–E174 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Karin, M., Yamamoto, Y. & Wang, Q.M. The IKK NF-κB system: a treasure trove for drug development. Nat. Rev. Drug Discov. 3, 17–26 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Oh, D.Y. et al. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ma, X. et al. Molecular basis of Tank-binding kinase 1 activation by transautophosphorylation. Proc. Natl. Acad. Sci. USA 109, 9378–9383 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Clark, K., Takeuchi, O., Akira, S. & Cohen, P. The TRAF-associated protein TANK facilitates cross-talk within the IκB kinase family during Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 108, 17093–17098 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bamborough, P. et al. 5-(1H-Benzimidazol-1-yl)-3-alkoxy-2-thiophenecarbonitriles as potent, selective, inhibitors of IKK-ɛn kinase. Bioorg. Med. Chem. Lett. 16, 6236–6240 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Clark, K. et al. Novel cross-talk within the IKK family controls innate immunity. Biochem. J. 434, 93–104 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Torii, H. et al. Metabolic fate of amoxanox (AA-673), a new antiallergic agent, in rats, mice, guinea-pigs and dogs. Jpn. Pharmacol. Ther. 13, 4933–4954 (1985).

    CAS  Google Scholar 

  31. Friedman, J.M. Modern science versus the stigma of obesity. Nat. Med. 10, 563–569 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Weisberg, S.P. et al. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112, 1796–1808 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lumeng, C.N., Bodzin, J.L. & Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117, 175–184 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Um, S.H. et al. Absence of S6K1 protects against age- and diet-induced obesity while enhancing insulin sensitivity. Nature 431, 200–205 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Seals, D.R. & Bell, C. Chronic sympathetic activation: consequence and cause of age-associated obesity? Diabetes 53, 276–284 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Olefsky, J.M. & Saltiel, A.R. PPARγ and the treatment of insulin resistance. Trends Endocrinol. Metab. 11, 362–368 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Pradhan, A.D., Manson, J.E., Rifai, N., Buring, J.E. & Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. J. Am. Med. Assoc. 286, 327–334 (2001).

    Article  CAS  Google Scholar 

  39. Festa, A., D′Agostino, R. Jr., Tracy, R.P. & Haffner, S.M. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes 51, 1131–1137 (2002).

    Article  CAS  PubMed  Google Scholar 

  40. Blackburn, P. et al. Postprandial variations of plasma inflammatory markers in abdominally obese men. Obesity (Silver Spring) 14, 1747–1754 (2006).

    Article  CAS  Google Scholar 

  41. Aron-Wisnewsky, J. et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J. Clin. Endocrinol. Metab. 94, 4619–4623 (2009).

    Article  CAS  PubMed  Google Scholar 

  42. Schenk, S., Saberi, M. & Olefsky, J.M. Insulin sensitivity: modulation by nutrients and inflammation. J. Clin. Invest. 118, 2992–3002 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Odegaard, J.I. & Chawla, A. Alternative macrophage activation and metabolism. Annu. Rev. Pathol. 6, 275–297 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nishimura, S. et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat. Med. 15, 914–920 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 15, 921–929 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Winer, D.A. et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat. Med. 17, 610–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nakamura, T. et al. Double-stranded RNA–dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338–348 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Summers, S.A. Sphingolipids and insulin resistance: the five Ws. Curr. Opin. Lipidol. 21, 128–135 (2010).

    Article  CAS  PubMed  Google Scholar 

  50. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saberi, M. et al. Hematopoietic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat–fed mice. Cell Metab. 10, 419–429 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wellen, K.E. et al. Coordinated regulation of nutrient and inflammatory responses by STAMP2 is essential for metabolic homeostasis. Cell 129, 537–548 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lesniewski, L.A. et al. Bone marrow–specific Cap gene deletion protects against high-fat diet–induced insulin resistance. Nat. Med. 13, 455–462 (2007).

    Article  CAS  PubMed  Google Scholar 

  54. Holland, W.L. et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Solomon, D.H. et al. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. J. Am. Med. Assoc. 305, 2525–2531 (2011).

    Article  CAS  Google Scholar 

  57. Hundal, R.S. et al. Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J. Clin. Invest. 109, 1321–1326 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Zhang, X. et al. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes 60, 486–495 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liu, J. et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat. Med. 15, 940–945 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zick, Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci. STKE 2005, pe4 (2005).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Hung and X. Peng for excellent technical assistance and members of the Saltiel laboratory for helpful discussions. This work was supported by US National Institutes of Health grants DK60597 and 60591 to A.R.S., F32DK09685101 to S.M.R., F30DK089687 to J.M. and R24DK090962 to A.R.S., J.M.O. and R.M.E. R.M.E., M.D. and R.T.Y. are supported by the Leona M. and Harry B. Helmsley Charitable Trust. We thank S. Akira (Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan) for providing MEFs. We also acknowledge support from the Michigan Diabetes Research and Training Center (DK020572), Michigan Institute for Clinical and Health Research (UL1-RR024986), Nathan Shock Center, Michigan Metabolic Phenotyping Core and Michigan Nutritional Obesity Research Center (DK089503).

Author information

Authors and Affiliations

Authors

Contributions

A.R.S. and S.M.R. wrote the manuscript. S.M.R. created figures. S.M.R. produced the data in Figures 1e, 3e,i, 4f–i, 5c,f–h and 6c–j and in Supplementary Figures 1, 2c–h, 5b,e,g,h and 6a,b. S.-H.C. produced the data in Figures 3a–d,f–h,j, 4a–e, 5a,c–e and 6a,b and in Supplementary Figures 2a,b, 3 and 5a,d,f. S.J.D. and M.J.L. performed the screen identifying amlexanox as an IKK-ɛ inhibitor. L.C. and S.J.D. produced the data in Figures 1b and 2b,c,f. M.U. produced the data in Figures 1a and 2e and in Supplementary Figures 5c and 6c–e. J.R.R. produced the images in Figure 1d. J.M. produced the data in Figure 1c. N.M.W. produced the data in Supplementary Figure 4a–d. I.H. produced the data in Supplementary Figure 4e. M.D., R.T.Y., C.L. and R.M.E. contributed data not shown, which was instrumental in generating Figure 5f–h. D.O. produced the data in Figure 1d and the samples for Figure 1e. P.L. produced the data in Figure 1f under the guidance of J.M.O.

Corresponding author

Correspondence to Alan R Saltiel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Table 1 and Supplementary Methods (PDF 2009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reilly, S., Chiang, SH., Decker, S. et al. An inhibitor of the protein kinases TBK1 and IKK-ɛ improves obesity-related metabolic dysfunctions in mice. Nat Med 19, 313–321 (2013). https://doi.org/10.1038/nm.3082

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3082

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing