Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy

Abstract

Temporal lobe epilepsy (TLE) is accompanied by an abnormal location of granule cells in the dentate gyrus. Using a rat model of complex febrile seizures, which are thought to be a precipitating insult of TLE later in life, we report that aberrant migration of neonatal-generated granule cells results in granule cell ectopia that persists into adulthood. Febrile seizures induced an upregulation of GABAA receptors (GABAA-Rs) in neonatally generated granule cells, and hyperactivation of excitatory GABAA-Rs caused a reversal in the direction of granule cell migration. This abnormal migration was prevented by RNAi-mediated knockdown of the Na+K+2Cl co-transporter (NKCC1), which regulates the excitatory action of GABA. NKCC1 inhibition with bumetanide after febrile seizures rescued the granule cell ectopia, susceptibility to limbic seizures and development of epilepsy. Thus, this work identifies a previously unknown pathogenic role of excitatory GABAA-R signaling and highlights NKCC1 as a potential therapeutic target for preventing granule cell ectopia and the development of epilepsy after febrile seizures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Febrile seizures induce ectopic granule cells.
Figure 2: GABAA-R signaling modulates granule cell migration.
Figure 3: GABAA-R hyperactivity underlies aberrant granule cell migration.
Figure 4: NKCC1 inhibition rescues granule cell migration deficits and ectopia.
Figure 5: Bumetanide rescues granule cell ectopia, seizure susceptibility and development of epilepsy.
Figure 6: Bumetanide blocks the emergence of ectopic granule cells and epileptic ripples in adulthood.

Similar content being viewed by others

References

  1. Chevassus-au-Louis, N., Baraban, S.C., Gaiarsa, J.L. & Ben Ari, Y. Cortical malformations and epilepsy: new insights from animal models. Epilepsia 40, 811–821 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Jacobs, K.M., Kharazia, V.N. & Prince, D.A. Mechanisms underlying epileptogenesis in cortical malformations. Epilepsy Res. 36, 165–188 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Lee, K.S. et al. A genetic animal model of human neocortical heterotopia associated with seizures. J. Neurosci. 17, 6236–6242 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Chevassus-Au-Louis, N., Rafiki, A., Jorquera, I., Ben Ari, Y. & Represa, A. Neocortex in the hippocampus: an anatomical and functional study of CA1 heterotopias after prenatal treatment with methylazoxymethanol in rats. J. Comp. Neurol. 394, 520–536 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Roper, S.N., Gilmore, R.L. & Houser, C.R. Experimentally induced disorders of neuronal migration produce an increased propensity for electrographic seizures in rats. Epilepsy Res. 21, 205–219 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Manent, J.B., Wang, Y., Chang, Y., Paramasivam, M. & LoTurco, J.J. Dcx reexpression reduces subcortical band heterotopia and seizure threshold in an animal model of neuronal migration disorder. Nat. Med. 15, 84–90 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Houser, C.R. Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res. 535, 195–204 (1990).

    Article  CAS  PubMed  Google Scholar 

  8. Lurton, D., El Bahh, B., Sundstrom, L. & Rougier, A. Granule cell dispersion is correlated with early epileptic events in human temporal lobe epilepsy. J. Neurol. Sci. 154, 133–136 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Parent, J.M. & Murphy, G.G. Mechanisms and functional significance of aberrant seizure-induced hippocampal neurogenesis. Epilepsia 49 (suppl. 5), 19–25 (2008).

    Article  PubMed  Google Scholar 

  10. Scharfman, H., Goodman, J. & McCloskey, D. Ectopic granule cells of the rat dentate gyrus. Dev. Neurosci. 29, 14–27 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Riban, V. et al. Evolution of hippocampal epileptic activity during the development of hippocampal sclerosis in a mouse model of temporal lobe epilepsy. Neuroscience 112, 101–111 (2002).

    Article  CAS  PubMed  Google Scholar 

  12. Scharfman, H.E., Goodman, J.H. & Sollas, A.L. Granule-like neurons at the hilar/CA3 border after status epilepticus and their synchrony with area CA3 pyramidal cells: functional implications of seizure-induced neurogenesis. J. Neurosci. 20, 6144–6158 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Scharfman, H.E., Sollas, A.L. & Goodman, J.H. Spontaneous recurrent seizures after pilocarpine-induced status epilepticus activate calbindin-immunoreactive hilar cells of the rat dentate gyrus. Neuroscience 111, 71–81 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Hauser, W.A. The prevalence and incidence of convulsive disorders in children. Epilepsia 35 (suppl. 2), S1–S6 (1994).

    Article  PubMed  Google Scholar 

  15. Berg, A.T. & Shinnar, S. Complex febrile seizures. Epilepsia 37, 126–133 (1996).

    Article  CAS  PubMed  Google Scholar 

  16. Nelson, K.B. & Ellenberg, J.H. Predictors of epilepsy in children who have experienced febrile seizures. N. Engl. J. Med. 295, 1029–1033 (1976).

    Article  CAS  PubMed  Google Scholar 

  17. Cendes, F. et al. Early childhood prolonged febrile convulsions, atrophy and sclerosis of mesial structures, and temporal lobe epilepsy: an MRI volumetric study. Neurology 43, 1083–1087 (1993).

    Article  CAS  PubMed  Google Scholar 

  18. French, J.A. et al. Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann. Neurol. 34, 774–780 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Bender, R.A., Dubé, C. & Baram, T.Z. Febrile seizures and mechanisms of epileptogenesis: insights from an animal model. Adv. Exp. Med. Biol. 548, 213–225 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koyama, R. & Matsuki, N. Novel etiological and therapeutic strategies for neurodiseases: mechanisms and consequences of febrile seizures: lessons From animal models. J. Pharmacol. Sci. 113, 14–22 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, K. et al. Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability. Nat. Med. 7, 331–337 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dubé, C. et al. Prolonged febrile seizures in the immature rat model enhance hippocampal excitability long term. Ann. Neurol. 47, 336–344 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Dubé, C. et al. Temporal lobe epilepsy after experimental prolonged febrile seizures: prospective analysis. Brain 129, 911–922 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Muramatsu, R., Ikegaya, Y., Matsuki, N. & Koyama, R. Early-life status epilepticus induces ectopic granule cells in adult mice dentate gyrus. Exp. Neurol. 211, 503–510 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Muramatsu, R., Ikegaya, Y., Matsuki, N. & Koyama, R. Neonatally born granule cells numerically dominate adult mice dentate gyrus. Neuroscience 148, 593–598 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Behar, T.N. et al. GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J. Neurosci. 16, 1808–1818 (1996).

    Article  CAS  PubMed  Google Scholar 

  27. Ben-Ari, Y. Excitatory actions of gaba during development: the nature of the nurture. Nat. Rev. Neurosci. 3, 728–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. Bolteus, A.J. & Bordey, A. GABA release and uptake regulate neuronal precursor migration in the postnatal subventricular zone. J. Neurosci. 24, 7623–7631 (2004).

    Article  CAS  PubMed  Google Scholar 

  29. Heck, N. et al. GABA-A receptors regulate neocortical neuronal migration in vitro and in vivo. Cereb. Cortex 17, 138–148 (2007).

    Article  PubMed  Google Scholar 

  30. Manent, J.B. et al. A noncanonical release of GABA and glutamate modulates neuronal migration. J. Neurosci. 25, 4755–4765 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Eckenhoff, M.F. & Rakic, P. Radial organization of the hippocampal dentate gyrus: a Golgi, ultrastructural, and immunocytochemical analysis in the developing rhesus monkey. J. Comp. Neurol. 223, 1–21 (1984).

    Article  CAS  PubMed  Google Scholar 

  32. Frotscher, M., Haas, C.A. & Forster, E. Reelin controls granule cell migration in the dentate gyrus by acting on the radial glial scaffold. Cereb. Cortex 13, 634–640 (2003).

    Article  PubMed  Google Scholar 

  33. Tozuka, Y., Fukuda, S., Namba, T., Seki, T. & Hisatsune, T. GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47, 803–815 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Hatanaka, Y. & Murakami, F. In vitro analysis of the origin, migratory behavior, and maturation of cortical pyramidal cells. J. Comp. Neurol. 454, 1–14 (2002).

    Article  PubMed  Google Scholar 

  35. Wang, D.D., Krueger, D.D. & Bordey, A. GABA depolarizes neuronal progenitors of the postnatal subventricular zone via GABAA receptor activation. J. Physiol. (Lond.) 550, 785–800 (2003).

    Article  CAS  Google Scholar 

  36. Guan, C.B., Xu, H.T., Jin, M., Yuan, X.B. & Poo, M.M. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 129, 385–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Komuro, H. & Rakic, P. Intracellular Ca2+ fluctuations modulate the rate of neuronal migration. Neuron 17, 275–285 (1996).

    Article  CAS  PubMed  Google Scholar 

  38. Fukuda, A. et al. Changes in intracellular Ca2+ induced by GABAA receptor activation and reduction in Cl gradient in neonatal rat neocortex. J. Neurophysiol. 79, 439–446 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Payne, J.A., Rivera, C., Voipio, J. & Kaila, K. Cation-chloride co-transporters in neuronal communication, development and trauma. Trends Neurosci. 26, 199–206 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Peng, Z. & Houser, C.R. Temporal patterns of fos expression in the dentate gyrus after spontaneous seizures in a mouse model of temporal lobe epilepsy. J. Neurosci. 25, 7210–7220 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. McCloskey, D.P., Hintz, T.M., Pierce, J.P. & Scharfman, H.E. Stereological methods reveal the robust size and stability of ectopic hilar granule cells after pilocarpine-induced status epilepticus in the adult rat. Eur. J. Neurosci. 24, 2203–2210 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ibarz, J.M., Foffani, G., Cid, E., Inostroza, M. & Menendez, P. Emergent dynamics of fast ripples in the epileptic hippocampus. J. Neurosci. 30, 16249–16261 (2010).

    Article  CAS  PubMed  Google Scholar 

  44. Bragin, A., Engel, J. Jr., Wilson, C.L., Fried, I. & Mathern, G.W. Hippocampal and entorhinal cortex high-frequency oscillations (100–500 Hz) in human epileptic brain and in kainic acid-treated rats with chronic seizures. Epilepsia 40, 127–137 (1999).

    Article  CAS  PubMed  Google Scholar 

  45. Worrell, G.A. et al. High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recording. Brain 131, 928–937 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Engel, J. Jr., Bragin, A., Staba, R. & Mody, I. High-frequency oscillations: what is normal and what is not? Epilepsia 50, 598–604 (2009).

    Article  PubMed  Google Scholar 

  47. Behar, T.N., Schaffner, A.E., Scott, C.A., Greene, C.L. & Barker, J.L. GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb. Cortex 10, 899–909 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Förster, E., Zhao, S. & Frotscher, M. Laminating the hippocampus. Nat. Rev. Neurosci. 7, 259–267 (2006).

    Article  PubMed  Google Scholar 

  49. Safiulina, V.F., Fattorini, G., Conti, F. & Cherubini, E. GABAergic signaling at mossy fiber synapses in neonatal rat hippocampus. J. Neurosci. 26, 597–608 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Romo-Parra, H., Vivar, C., Maqueda, J., Morales, M.A. & Gutierrez, R. Activity-dependent induction of multitransmitter signaling onto pyramidal cells and interneurons of hippocampal area CA3. J. Neurophysiol. 89, 3155–3167 (2003).

    Article  CAS  PubMed  Google Scholar 

  51. Sullivan, J.E., Witte, M.K., Yamashita, T.S., Myers, C.M. & Blumer, J.L. Pharmacokinetics of bumetanide in critically ill infants. Clin. Pharmacol. Ther. 60, 405–413 (1996).

    Article  CAS  PubMed  Google Scholar 

  52. Dzhala, V.I. et al. NKCC1 transporter facilitates seizures in the developing brain. Nat. Med. 11, 1205–1213 (2005).

    Article  CAS  PubMed  Google Scholar 

  53. Kahle, K.T., Barnett, S.M., Sassower, K.C. & Staley, K.J. Decreased seizure activity in a human neonate treated with bumetanide, an inhibitor of the Na+-K+-2Cl cotransporter NKCC1. J. Child Neurol. 24, 572–576 (2009).

    Article  PubMed  Google Scholar 

  54. Dyhrfjeld-Johnsen, J., Morgan, R.J., Foldy, C. & Soltesz, I. Upregulated H-current in hyperexcitable CA1 dendrites after febrile seizures. Front. Cell Neurosci. 2, 2 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Koyama, R. et al. A low-cost method for brain slice cultures. J Pharmacol. Sci. 104, 191–194 (2007).

    Article  CAS  PubMed  Google Scholar 

  56. Yamada, R.X. et al. Long-range axonal calcium sweep induces axon retraction. J. Neurosci. 28, 4613–4618 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Sasaki, T., Matsuki, N. & Ikegaya, Y. Action-potential modulation during axonal conduction. Science 331, 599–601 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Patel, S., Meldrum, B.S. & Fine, A. Susceptibility to pilocarpine-induced seizures in rats increases with age. Behav. Brain Res. 31, 165–167 (1988).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant-in-Aid for Science Research on Young Scientists (B) (19790048) and on Innovative Areas 'Mesoscopic Neurocircuitry' (22115003) from The Ministry of Education, Culture, Sports, Science and Technology of Japan; the Research Foundation for Pharmaceutical Sciences; and the Funding Program for Next Generation World-Leading Researchers (LS023).

Author information

Authors and Affiliations

Authors

Contributions

R.K. designed the project, conducted and analyzed the experiments, and wrote the manuscript. K.T. did in vivo electrophysiology, long-term video monitoring and helped with preparation of retroviruses. T.S. did in vitro electrophysiology and time-lapse imaging in explant cultures. J.I. did injection of retroviruses. D.M. helped with in vivo electrophysiology. R.M. helped with perfusion of mice. N.M. and Y.I. are senior authors and were responsible for project planning. All authors analyzed and discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ryuta Koyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods and Supplementary Figures 1–9 (PDF 1062 kb)

Supplementary Video 1

Radial migration of a GFP+ GC (Supplementary Fig. 4a). The images were acquired every 1 h for 24 h during the 3 to 4 DIV. (MOV 349 kb)

Supplementary Video 2

Somal translocation of a GFP+ GC (Supplementary Fig. 4b). The images were acquired every 1 h for 24 h during the 3 to 4 DIV. (MOV 343 kb)

Supplementary Video 3

Aberrant migration of a GC from a HT rat in Figure 3c. The images were acquired every 1 h for 6 h beginning at 3 DIV. (MOV 92 kb)

Supplementary Video 4

A migrating GC from the explant culture prepared from a NT rat (Fig. 4b, left). The images were acquired at 1 frame per 2 min for 60 min. Muscimol was focally applied to the leading growth cone for 1 min at the time point of 0 min. (MOV 545 kb)

Supplementary Video 5

A migrating GC from the explant culture prepared from a HT rat (Fig. 4b, right). The images were acquired at 1 frame per 2 min for 60 min. Muscimol was focally applied to the leading growth cone for 1 min at the time point of 0 min. (MOV 261 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koyama, R., Tao, K., Sasaki, T. et al. GABAergic excitation after febrile seizures induces ectopic granule cells and adult epilepsy. Nat Med 18, 1271–1278 (2012). https://doi.org/10.1038/nm.2850

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2850

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing