Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors

Abstract

Inhibitors of αvβ3 and αvβ5 integrin have entered clinical trials as antiangiogenic agents for cancer treatment but generally have been unsuccessful. Here we present in vivo evidence that low (nanomolar) concentrations of RGD-mimetic αvβ3 and αvβ5 inhibitors can paradoxically stimulate tumor growth and tumor angiogenesis. We show that low concentrations of these inhibitors promote VEGF-mediated angiogenesis by altering αvβ3 integrin and vascular endothelial growth factor receptor-2 trafficking, thereby promoting endothelial cell migration to VEGF. The proangiogenic effects of low concentrations of RGD-mimetic integrin inhibitors could compromise their efficacy as anticancer agents and have major implications for the use of RGD-mimetic compounds in humans.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2: Low concentrations of αvβ3vβ5 inhibitors promote VEGF-mediated angiogenesis and compromise antiangiogenic effects.
Figure 1: Nanomolar concentrations of αvβ3vβ5 inhibitors enhance tumor growth and angiogenesis.
Figure 3: VEGFR2 is required for the effects of low dose αvβ3vβ5 inhibitors.
Figure 4: Low concentrations of an αvβ3vβ5 inhibitor suppress VEGFR2 degradation and alter the subcellular localization of VEGFR2 and αvβ3 integrin.
Figure 5: Low concentrations of an αvβ3vβ5 inhibitor promote Rab4A-mediated recycling of VEGFR2 and αvβ3 integrin.
Figure 6: Low concentrations of αvβ3vβ5 inhibitors promote endothelial cell migration but not proliferation.

Similar content being viewed by others

References

  1. Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Ellis, L.M. & Hicklin, D.J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579–591 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Ferrara, N., Hillan, K.J., Gerber, H.P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391–400 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Olsson, A.K., Dimberg, A., Kreuger, J. & Claesson-Welsh, L. VEGF receptor signalling—in control of vascular function. Nat. Rev. Mol. Cell Biol. 7, 359–371 (2006).

    Article  CAS  PubMed  Google Scholar 

  5. Neufeld, G., Cohen, T., Gengrinovitch, S. & Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 13, 9–22 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335–2342 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. Sandler, A. et al. Paclitaxel-carboplatin alone or with bevacizumab for non–small-cell lung cancer. N. Engl. J. Med. 355, 2542–2550 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Miller, K. et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N. Engl. J. Med. 357, 2666–2676 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Motzer, R.J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115–124 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. Varner, J.A. & Cheresh, D.A. Integrins and cancer. Curr. Opin. Cell Biol. 8, 724–730 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Hodivala-Dilke, K.M., Reynolds, A.R. & Reynolds, L.E. Integrins in angiogenesis: multitalented molecules in a balancing act. Cell Tissue Res. 314, 131–144 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. Mitjans, F. et al. In vivo therapy of malignant melanoma by means of antagonists of αv integrins. Int. J. Cancer 87, 716–723 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Buerkle, M.A. et al. Inhibition of the αv integrins with a cyclic RGD peptide impairs angiogenesis, growth and metastasis of solid tumours in vivo. Br. J. Cancer 86, 788–795 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. MacDonald, T.J. et al. Preferential susceptibility of brain tumors to the antiangiogenic effects of an αv integrin antagonist. Neurosurgery 48, 151–157 (2001).

    CAS  PubMed  Google Scholar 

  15. Tucker, G.C. Integrins: molecular targets in cancer therapy. Curr. Oncol. Rep. 8, 96–103 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Stupp, R. & Ruegg, C. Integrin inhibitors reaching the clinic. J. Clin. Oncol. 25, 1637–1638 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Brooks, P.C., Clark, R.A. & Cheresh, D.A. Requirement of vascular integrin αvβ3 for angiogenesis. Science 264, 569–571 (1994).

    Article  CAS  PubMed  Google Scholar 

  18. Brooks, P.C. et al. Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79, 1157–1164 (1994).

    Article  CAS  PubMed  Google Scholar 

  19. Brooks, P.C. et al. Antiintegrin αvβ3 blocks human breast cancer growth and angiogenesis in human skin. J. Clin. Invest. 96, 1815–1822 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tucker, G.C. αv integrin inhibitors and cancer therapy. Curr. Opin. Investig. Drugs 4, 722–731 (2003).

    CAS  PubMed  Google Scholar 

  21. Dechantsreiter, M.A. et al. N-Methylated cyclic RGD peptides as highly active and selective αVβ3 integrin antagonists. J. Med. Chem. 42, 3033–3040 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Nisato, R.E., Tille, J.C., Jonczyk, A., Goodman, S.L. & Pepper, M.S. αvβ3 and αvβ5 integrin antagonists inhibit angiogenesis in vitro. Angiogenesis 6, 105–119 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Perron-Sierra, F. et al. Substituted benzocyloheptenes as potent and selective αv integrin antagonists. Bioorg. Med. Chem. Lett. 12, 3291–3296 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Maubant, S. et al. Blockade of αvβ3 and αvβ5 integrins by RGD mimetics induces anoikis and not integrin-mediated death in human endothelial cells. Blood 108, 3035–3044 (2006).

    Article  CAS  PubMed  Google Scholar 

  25. Nabors, L.B. et al. Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J. Clin. Oncol. 25, 1651–1657 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Eskens, F.A. et al. Phase I and pharmacokinetic study of continuous twice weekly intravenous administration of Cilengitide (EMD 121974), a novel inhibitor of the integrins αvβ3 and αvβ5 in patients with advanced solid tumours. Eur. J. Cancer 39, 917–926 (2003).

    Article  CAS  PubMed  Google Scholar 

  27. Friess, H. et al. A randomized multi-center phase II trial of the angiogenesis inhibitor cilengitide (EMD 121974) and gemcitabine compared with gemcitabine alone in advanced unresectable pancreatic cancer. BMC Cancer 6, 285 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hariharan, S. et al. Assessment of the biological and pharmacological effects of the αvβ3 and αvβ5 integrin receptor antagonist, cilengitide (EMD 121974), in patients with advanced solid tumors. Ann. Oncol. 18, 1400–1407 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Chatterjee, S., Matsumura, A., Schradermeier, J. & Gillespie, G.Y. Human malignant glioma therapy using anti-αvβ3 integrin agents. J. Neurooncol. 46, 135–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Taga, T. αv-integrin antagonist EMD 121974 induces apoptosis in brain tumor cells growing on vitronectin and tenascin. Int. J. Cancer 98, 690–697 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. Legler, D.F., Wiedle, G., Ross, F.P. & Imhof, B.A. Superactivation of integrin αvβ3 by low antagonist concentrations. J. Cell Sci. 114, 1545–1553 (2001).

    CAS  PubMed  Google Scholar 

  32. Prewett, M. et al. Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res. 59, 5209–5218 (1999).

    CAS  PubMed  Google Scholar 

  33. Reynolds, A.R. et al. Elevated Flk1 (vascular endothelial growth factor receptor 2) signaling mediates enhanced angiogenesis in β3-integrin–deficient mice. Cancer Res. 64, 8643–8650 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Duval, M., Bedard-Goulet, S., Delisle, C. & Gratton, J.P. Vascular endothelial growth factor–dependent down-regulation of Flk-1/KDR involves Cbl-mediated ubiquitination. Consequences on nitric oxide production from endothelial cells. J. Biol. Chem. 278, 20091–20097 (2003).

    Article  CAS  PubMed  Google Scholar 

  35. Ewan, L.C. et al. Intrinsic tyrosine kinase activity is required for vascular endothelial growth factor receptor 2 ubiquitination, sorting and degradation in endothelial cells. Traffic 7, 1270–1282 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Lampugnani, M.G., Orsenigo, F., Gagliani, M.C., Tacchetti, C. & Dejana, E. Vascular endothelial cadherin controls VEGFR-2 internalization and signaling from intracellular compartments. J. Cell Biol. 174, 593–604 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gampel, A. et al. VEGF regulates the mobilization of VEGFR2/KDR from an intracellular endothelial storage compartment. Blood 108, 2624–2631 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Roberts, M., Barry, S., Woods, A., van der Sluijs, P. & Norman, J. PDGF-regulated rab4-dependent recycling of αvβ3 integrin from early endosomes is necessary for cell adhesion and spreading. Curr. Biol. 11, 1392–1402 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Caswell, P. & Norman, J. Endocytic transport of integrins during cell migration and invasion. Trends Cell Biol. 18, 257–263 (2008).

    Article  CAS  PubMed  Google Scholar 

  40. Mahabeleshwar, G.H., Feng, W., Phillips, D.R. & Byzova, T.V. Integrin signaling is critical for pathological angiogenesis. J. Exp. Med. 203, 2495–2507 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Reynolds, L.E. et al. Enhanced pathological angiogenesis in mice lacking β3 integrin or β3 and β5 integrins. Nat. Med. 8, 27–34 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Hynes, R.O. A reevaluation of integrins as regulators of angiogenesis. Nat. Med. 8, 918–921 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Hodivala-Dilke, K. αvβ3 integrin and angiogenesis: a moody integrin in a changing environment. Curr. Opin. Cell. Biol. 20, 514–519 (2008).

    Article  CAS  PubMed  Google Scholar 

  44. Calabrese, E.J. Cancer biology and hormesis: human tumor cell lines commonly display hormetic (biphasic) dose responses. Crit. Rev. Toxicol. 35, 463–582 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Bretscher, M.S. Moving membrane up to the front of migrating cells. Cell 85, 465–467 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Bailly, M. et al. Epidermal growth factor receptor distribution during chemotactic responses. Mol. Biol. Cell 11, 3873–3883 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fan, G.H., Lapierre, L.A., Goldenring, J.R., Sai, J. & Richmond, A. Rab11-family interacting protein 2 and myosin Vb are required for CXCR2 recycling and receptor-mediated chemotaxis. Mol. Biol. Cell 15, 2456–2469 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jekely, G., Sung, H.H., Luque, C.M. & Rorth, P. Regulators of endocytosis maintain localized receptor tyrosine kinase signaling in guided migration. Dev. Cell 9, 197–207 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Caswell, P.T. et al. Rab-coupling protein coordinates recycling of α5β1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J. Cell Biol. 183, 143–155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Haubner, R. et al. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 61, 1781–1785 (2001).

    CAS  PubMed  Google Scholar 

  51. Chen, X., Conti, P.S. & Moats, R.A. In vivo near-infrared fluorescence imaging of integrin αvβ3 in brain tumor xenografts. Cancer Res. 64, 8009–8014 (2004).

    Article  CAS  PubMed  Google Scholar 

  52. Danen, E.H., Sonneveld, P., Brakebusch, C., Fassler, R. & Sonnenberg, A. The fibronectin-binding integrins α5β1 and αvβ3 differentially modulate RhoA-GTP loading, organization of cell matrix adhesions, and fibronectin fibrillogenesis. J. Cell Biol. 159, 1071–1086 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Dormond, O., Ponsonnet, L., Hasmim, M., Foletti, A. & Ruegg, C. Manganese-induced integrin affinity maturation promotes recruitment of αVβ3 integrin to focal adhesions in endothelial cells: evidence for a role of phosphatidylinositol 3-kinase and Src. Thromb. Haemost. 92, 151–161 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank S. Goodman (Merck KGaA) for the gift of the cilengitide; P. Casara (Institut de Recherches Servier) for the synthesis of S 36578; D. Hicklin (Imclone Systems Incorporated) for the gift of the DC101 antibody; M. Marsh (University College London) for the gift of the CD63-specific antibody; P. Newman (Medical College of Wisconsin) for the gift of the AP5 antibody; A. Mustafa and the staff of the Biological Services Units at Queen Mary University of London and Cancer Research UK for their assistance with animal experiments; G. Elia and the staff of the Histopathology Unit at Cancer Research UK for the preparation of tissue sections; G. D'Amico Lago, P. Caswell, C. Junges and M. Bertrand for assistance with experiments; and B. Imhof, J. Hickman and S. Kermorgant for useful discussions and critical comments on the manuscript. A.R.R. was funded by a Post-Doctoral Fellowship from Cancer Research UK, a Post-Doctoral Fellowship from the Barts and the Royal London Charitable Foundation (RAB04/F2) and a Senior Fellowship from Breakthrough Breast Cancer. J.C.W. and M.G. were supported by Breakthrough Breast Cancer, R.G.S. was a student of the Third Gulbenkian PhD Programme in Biomedicine and was sponsored by the Portuguese Foundation for Science and Technology (SFRH/BD/1/) 2003. I.R.H., A.R.W., D.T.J., M.C.J., S.D.R., V.K., G.S., J.C.N. and K.M.H.-D. are funded by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Contributions

A.R.R. conceived of and designed the study, performed the majority of the experiments and co-wrote the manuscript; I.R.H. assisted with in vivo experiments and provided comments on the manuscript; A.R.W., R.G.S., V.K. and G.S. assisted with in vivo experiments; J.C.W., S.D.R. and D.T.J. assisted with quantitative PCR and angiogenesis assays; G.D.V. made measurements on plasma samples; M.G. and M.C.J. assisted with in vitro biochemical assays; M.S. performed the analysis of VEGFR2 staining, F.P.-S. synthesized S 36578; J.C.N. designed and performed some of the receptor trafficking experiments and helped with data interpretation; G.C.T. assisted with the study design and provided vital research reagents; and K.M.H.-D. supervised the research and co-wrote the manuscript.

Corresponding authors

Correspondence to Andrew R Reynolds or Kairbaan M Hodivala-Dilke.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9 and Supplementary Methods (PDF 1574 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, A., Hart, I., Watson, A. et al. Stimulation of tumor growth and angiogenesis by low concentrations of RGD-mimetic integrin inhibitors. Nat Med 15, 392–400 (2009). https://doi.org/10.1038/nm.1941

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1941

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing