Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6–dependent B cell lymphomas

An Author Correction to this article was published on 03 April 2024

This article has been updated

Abstract

We report that heat shock protein 90 (Hsp90) inhibitors selectively kill diffuse large B cell lymphomas (DLBCLs) that depend on the BCL-6 transcriptional repressor. We found that endogenous Hsp90 interacts with BCL-6 in DLBCL cells and can stabilize BCL-6 mRNA and protein. Hsp90 formed a complex with BCL-6 at its target promoters, and Hsp90 inhibitors derepressed BCL-6 target genes. A stable mutant of BCL-6 rescued DLBCL cells from Hsp90 inhibitor–induced apoptosis. BCL-6 and Hsp90 were almost invariantly coexpressed in the nuclei of primary DLBCL cells, suggesting that their interaction is relevant in this disease. We examined the pharmacokinetics, toxicity and efficacy of PU-H71, a recently developed purine-derived Hsp90 inhibitor. PU-H71 preferentially accumulated in lymphomas compared to normal tissues and selectively suppressed BCL-6–dependent DLBCLs in vivo, inducing reactivation of key BCL-6 target genes and apoptosis. PU-H71 also induced cell death in primary human DLBCL specimens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hsp90 inhibition induces apoptosis preferentially in BCL-6–dependent DLBCL.
Figure 2: BCL-6 is an Hsp90 target protein.
Figure 3: Hsp90 prevents BCL-6 mRNA decay.
Figure 4: Hsp90 is expressed in the nuclear and cytoplasmic compartments of DLBCLs, and primary cells respond to PU-H71.
Figure 5: PU-H71 suppresses DLBCL xenografts.
Figure 6: PU-H71 induces additional changes in protein abundance and a specific gene expression signature in DLBCLs.

Similar content being viewed by others

Change history

References

  1. Neckers, L. Heat shock protein 90: the cancer chaperone. J. Biosci. 32, 517–530 (2007).

    Article  CAS  PubMed  Google Scholar 

  2. Wandinger, S.K., Richter, K. & Buchner, J. The Hsp90 chaperone machinery. J. Biol. Chem. 283, 18473–18477 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Bonvini, P., Gastaldi, T., Falini, B. & Rosolen, A. Nucleophosmin-anaplastic lymphoma kinase (NPM-ALK), a novel Hsp90-client tyrosine kinase: down-regulation of NPM-ALK expression and tyrosine phosphorylation in ALK+ CD30+ lymphoma cells by the Hsp90 antagonist 17-allylamino,17-demethoxygeldanamycin. Cancer Res. 62, 1559–1566 (2002).

    CAS  PubMed  Google Scholar 

  4. Nimmanapalli, R., O'Bryan, E. & Bhalla, K. Geldanamycin and its analogue 17-allylamino-17-demethoxygeldanamycin lowers Bcr-Abl levels and induces apoptosis and differentiation of Bcr-Abl–positive human leukemic blasts. Cancer Res. 61, 1799–1804 (2001).

    CAS  PubMed  Google Scholar 

  5. Chiosis, G. et al. A small molecule designed to bind to the adenine nucleotide pocket of Hsp90 causes Her2 degradation and the growth arrest and differentiation of breast cancer cells. Chem. Biol. 8, 289–299 (2001).

    Article  CAS  PubMed  Google Scholar 

  6. Caldas-Lopes, E. et al. Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models. Proc. Natl. Acad. Sci. USA 106, 8368–8373 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Taldone, T., Gozman, A., Maharaj, R. & Chiosis, G. Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr. Opin. Pharmacol. 8, 373–374 (2008).

    Article  Google Scholar 

  8. Chiosis, G. Discovery and development of purine-scaffold Hsp90 inhibitors. Curr. Top. Med. Chem. 6, 1183–1191 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Chiosis, G. et al. Development of purine-scaffold small molecule inhibitors of Hsp90. Curr. Cancer Drug Targets 3, 371–376 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Chiosis, G., Lucas, B., Shtil, A., Huezo, H. & Rosen, N. Development of a purine-scaffold novel class of Hsp90 binders that inhibit the proliferation of cancer cells and induce the degradation of Her2 tyrosine kinase. Bioorg. Med. Chem. 10, 3555–3564 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. He, H. et al. Identification of potent water soluble purine-scaffold inhibitors of the heat shock protein 90. J. Med. Chem. 49, 381–390 (2006).

    Article  CAS  PubMed  Google Scholar 

  12. Chiosis, G., Rodina, A. & Moulick, K. Emerging Hsp90 inhibitors: from discovery to clinic. Anticancer. Agents Med. Chem. 6, 1–8 (2006).

    Article  CAS  PubMed  Google Scholar 

  13. Klein, U. & Dalla-Favera, R. Germinal centres: role in B cell physiology and malignancy. Nat. Rev. Immunol. 8, 22–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Ci, W., Polo, J.M. & Melnick, A. B cell lymphoma 6 and the molecular pathogenesis of diffuse large B cell lymphoma. Curr. Opin. Hematol. 15, 381–390 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Phan, R.T. & Dalla-Favera, R. The BCL-6 proto-oncogene suppresses p53 expression in germinal-centre B cells. Nature 432, 635–639 (2004).

    Article  CAS  PubMed  Google Scholar 

  16. Ranuncolo, S.M. et al. Bcl-6 mediates the germinal center B cell phenotype and lymphomagenesis through transcriptional repression of the DNA-damage sensor ATR. Nat. Immunol. 8, 705–714 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. Cerchietti, L.C. et al. A peptomimetic inhibitor of BCL-6 with potent antilymphoma effects in vitro and in vivo. Blood 113, 3397–3405 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Polo, J.M. et al. Specific peptide interference reveals BCL-6 transcriptional and oncogenic mechanisms in B-cell lymphoma cells. Nat. Med. 10, 1329–1335 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Valbuena, J.R. et al. Expression of heat-shock protein-90 in non-Hodgkin's lymphomas. Mod. Pathol. 18, 1343–1349 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Monti, S. et al. Molecular profiling of diffuse large B cell lymphoma identifies robust subtypes including one characterized by host inflammatory response. Blood 105, 1851–1861 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Polo, J.M. et al. Transcriptional signature with differential expression of BCL-6 target genes accurately identifies BCL-6–dependent diffuse large B cell lymphomas. Proc. Natl. Acad. Sci. USA 104, 3207–3212 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schulte, T.W., Blagosklonny, M.V., Ingui, C. & Neckers, L. Disruption of the Raf-1–Hsp90 molecular complex results in destabilization of Raf-1 and loss of Raf-1-Ras association. J. Biol. Chem. 270, 24585–24588 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Sato, S., Fujita, N. & Tsuruo, T. Modulation of Akt kinase activity by binding to Hsp90. Proc. Natl. Acad. Sci. USA 97, 10832–10837 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Broemer, M., Krappmann, D. & Scheidereit, C. Requirement of Hsp90 activity for IκB kinase (IKK) biosynthesis and for constitutive and inducible IKK and NF-κB activation. Oncogene 23, 5378–5386 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Niu, H., Ye, B.H. & Dalla-Favera, R. Antigen receptor signaling induces MAP kinase–mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Laroia, G., Cuesta, R., Brewer, G. & Schneider, R.J. Control of mRNA decay by heat shock–ubiquitin-proteasome pathway. Science 284, 499–502 (1999).

    Article  CAS  PubMed  Google Scholar 

  27. Wax, S., Piecyk, M., Maritim, B. & Anderson, P. Geldanamycin inhibits the production of inflammatory cytokines in activated macrophages by reducing the stability and translation of cytokine transcripts. Arthritis Rheum. 48, 541–550 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Sinsimer, K.S. et al. Chaperone Hsp27, a novel subunit of AUF1 protein complexes, functions in AU-rich element–mediated mRNA decay. Mol. Cell. Biol. 28, 5223–5237 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dean, J.L., Sully, G., Clark, A.R. & Saklatvala, J. The involvement of AU-rich element–binding proteins in p38 mitogen-activated protein kinase pathway–mediated mRNA stabilisation. Cell. Signal. 16, 1113–1121 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Ing, N.H., Massuto, D.A. & Jaeger, L.A. Estradiol up-regulates AUF1p45 binding to stabilizing regions within the 3′-untranslated region of estrogen receptor α mRNA. J. Biol. Chem. 283, 1764–1772 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Bakheet, T., Frevel, M., Williams, B.R., Greer, W. & Khabar, K.S. ARED: human AU-rich element–containing mRNA database reveals an unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids Res. 29, 246–254 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, J. & DeFranco, D.B. Chromatin recycling of glucocorticoid receptors: implications for multiple roles of heat shock protein 90. Mol. Endocrinol. 13, 355–365 (1999).

    Article  CAS  PubMed  Google Scholar 

  33. Abu-Farha, M. et al. The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol. Cell. Proteomics 7, 560–572 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, R. & Houry, W.A. Hsp90: a chaperone for protein folding and gene regulation. Biochem. Cell Biol. 83, 703–710 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Shinozaki, F. et al. Depletion of hsp90beta induces multiple defects in B cell receptor signaling. J. Biol. Chem. 281, 16361–16369 (2006).

    Article  CAS  PubMed  Google Scholar 

  36. Abramson, J.S. et al. The heat shock protein 90 inhibitor IPI-504 induces apoptosis of AKT-dependent diffuse large B-cell lymphomas. Br. J. Haematol. 144, 358–366 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Robles, A.I. et al. Schedule-dependent synergy between the heat shock protein 90 inhibitor 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin and doxorubicin restores apoptosis to p53-mutant lymphoma cell lines. Clin. Cancer Res. 12, 6547–6556 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.C. Zenklusen for his contribution with gene expression profiling, D. Zatorska for the synthesis of PU-H71, L. Neckers (Urologic Oncology Branch, National Cancer Institute) for providing pGEM4Z Hsp90 vectors, V. Bardwell (University of Minnesota) for providing T7plink vectors, M. Shipp (Dana-Farber Cancer Center) for providing cell lines, and B.H. Ye (Albert Einstein College of Medicine) for providing FUW-hBCL-6 plasmid constructs and cell lines. G.C. is supported by the Geoffrey Beene Cancer Research Center of the Memorial Sloan-Kettering Cancer Center, Mr. William H. and Mrs. Alice Goodwin and the Commonwealth Foundation for Cancer Research, the Leukemia and Lymphoma Society, the Translational and Integrative Medicine Research Fund and the Experimental Therapeutics Center of the Memorial Sloan-Kettering Cancer Center. A. Melnick is supported by the Leukemia and Lymphoma Society grant S-7032-04, US National Cancer Institute grant R01-CA10434 and the Chemotherapy Foundation. This research was supported in part by the Intramural Research Program of the US National Institutes of Health National Cancer Institute Center for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

L.C.C., G.C. and A. Melnick conceived of the project. L.C.C., E.C.L., S.N.Y., K.H., K.L.B., L.A.T., A. Mallik, A.I.R., J.W. and R.S. performed experiments and analyzed data. L.C.C., E.C.L., A. Melnick, L.V., K.N.B. and G.C. designed the studies and supervised research. K.N.B. and L.V. gave scientific advice. L.C.C., A. Melnick and G.C. wrote the manuscript.

Corresponding authors

Correspondence to Gabriela Chiosis or Ari Melnick.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–13, Supplementary Tables 1–4 and Supplementary Methods (PDF 1660 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerchietti, L., Lopes, E., Yang, S. et al. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6–dependent B cell lymphomas. Nat Med 15, 1369–1376 (2009). https://doi.org/10.1038/nm.2059

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2059

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing