Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pathophysiology of T follicular helper cells in humans and mice

Abstract

Follicular helper T cells (TFH cells) compose a heterogeneous subset of CD4+ T cells that induce the differentiation of B cells into plasma cells and memory cells. They are found within and in proximity to germinal centers in secondary lymphoid organs, and their memory compartment also circulates in the blood. Our knowledge on the biology of TFH cells has increased significantly during the past decade, largely as a result of mouse studies. However, recent studies on human TFH cells isolated from lymphoid organ and blood samples and recent observations on the developmental mechanism of human TFH cells have revealed both similarities and differences between human and mouse TFH cells. Here we present the similarities and differences between mouse and human lymphoid organ–resident TFH cells and discuss the role of TFH cells in response to vaccines and in disease pathogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Potential mechanism in the generation of human TFH subsets.
Figure 2: Alteration of blood memory TFH subsets in human autoimmune diseases.
Figure 3: Risk loci of human autoimmune diseases associated with the TFH developmental pathway.

Similar content being viewed by others

References

  1. Miller, J.F. & Mitchell, G.F. Cell to cell interaction in the immune response. I. Hemolysin-forming cells in neonatally thymectomized mice reconstituted with thymus or thoracic duct lymphocytes. J. Exp. Med. 128, 801–820 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. MacLennan, I.C. Germinal centers. Annu. Rev. Immunol. 12, 117–139 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Allen, C.D., Okada, T. & Cyster, J.G. Germinal-center organization and cellular dynamics. Immunity 27, 190–202 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Victora, G.D. & Nussenzweig, M.C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Banchereau, J. et al. The CD40 antigen and its ligand. Annu. Rev. Immunol. 12, 881–922 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Dobner, T., Wolf, I., Emrich, T. & Lipp, M. Differentiation-specific expression of a novel G protein-coupled receptor from Burkitt's lymphoma. Eur. J. Immunol. 22, 2795–2799 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Förster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 1037–1047 (1996).

    Article  PubMed  Google Scholar 

  9. Ansel, K.M., McHeyzer-Williams, L.J., Ngo, V.N., McHeyzer-Williams, M.G. & Cyster, J.G. In vivo-activated CD4 T cells upregulate CXC chemokine receptor 5 and reprogram their response to lymphoid chemokines. J. Exp. Med. 190, 1123–1134 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Breitfeld, D. et al. Follicular B helper T cells express CXC chemokine receptor 5, localize to B cell follicles, and support immunoglobulin production. J. Exp. Med. 192, 1545–1552 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schaerli, P. et al. CXC chemokine receptor 5 expression defines follicular homing T cells with B cell helper function. J. Exp. Med. 192, 1553–1562 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, C.H. et al. Subspecialization of CXCR5+ T cells: B helper activity is focused in a germinal center-localized subset of CXCR5+ T cells. J. Exp. Med. 193, 1373–1381 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Campbell, D.J., Kim, C.H. & Butcher, E.C. Separable effector T cell populations specialized for B cell help or tissue inflammation. Nat. Immunol. 2, 876–881 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Chtanova, T. et al. T follicular helper cells express a distinctive transcriptional profile, reflecting their role as non-Th1/Th2 effector cells that provide help for B cells. J. Immunol. 173, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. Rasheed, A.U., Rahn, H.P., Sallusto, F., Lipp, M. & Muller, G. Follicular B helper T cell activity is confined to CXCR5(hi)ICOS(hi) CD4 T cells and is independent of CD57 expression. Eur. J. Immunol. 36, 1892–1903 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Vinuesa, C.G. et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 435, 452–458 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bryant, V.L. et al. Cytokine-mediated regulation of human B cell differentiation into Ig-secreting cells: predominant role of IL-21 produced by CXCR5+ T follicular helper cells. J. Immunol. 179, 8180–8190 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Bentebibel, S.E., Schmitt, N., Banchereau, J. & Ueno, H. Human tonsil B-cell lymphoma 6 (BCL6)-expressing CD4+ T-cell subset specialized for B-cell help outside germinal centers. Proc. Natl. Acad. Sci. USA 108, E488–E497 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Han, S. et al. Cellular interaction in germinal centers. Roles of CD40 ligand and B7-2 in established germinal centers. J. Immunol. 155, 556–567 (1995).

    CAS  PubMed  Google Scholar 

  20. Casamayor-Palleja, M., Khan, M. & MacLennan, I.C. A subset of CD4+ memory T cells contains preformed CD40 ligand that is rapidly but transiently expressed on their surface after activation through the T cell receptor complex. J. Exp. Med. 181, 1293–1301 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Nurieva, R.I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Johnston, R.J. et al. Bcl6 and Blimp-1 are reciprocal and antagonistic regulators of T follicular helper cell differentiation. Science 325, 1006–1010 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, D. et al. The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 31, 457–468 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Tangye, S.G., Ma, C.S., Brink, R. & Deenick, E.K. The good, the bad and the ugly—TFH cells in human health and disease. Nat. Rev. Immunol. 13, 412–426 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Crotty, S. Follicular helper CD4 T cells (TFH). Annu. Rev. Immunol. 29, 621–663 (2011).

    Article  CAS  PubMed  Google Scholar 

  26. Flynn, S., Toellner, K.M., Raykundalia, C., Goodall, M. & Lane, P. CD4 T cell cytokine differentiation: the B cell activation molecule, OX40 ligand, instructs CD4 T cells to express interleukin 4 and upregulates expression of the chemokine receptor, Blr-1. J. Exp. Med. 188, 297–304 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kerfoot, S.M. et al. Germinal center B cell and T follicular helper cell development initiates in the interfollicular zone. Immunity 34, 947–960 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kitano, M. et al. Bcl6 protein expression shapes pre-germinal center B cell dynamics and follicular helper T cell heterogeneity. Immunity 34, 961–972 (2011).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, X. et al. Transcription factor achaete-scute homologue 2 initiates follicular T-helper-cell development. Nature 507, 513–518 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Haynes, N.M. et al. Role of CXCR5 and CCR7 in follicular Th cell positioning and appearance of a programmed cell death gene-1high germinal center-associated subpopulation. J. Immunol. 179, 5099–5108 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Odegard, J.M. et al. ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J. Exp. Med. 205, 2873–2886 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garside, P. et al. Visualization of specific B and T lymphocyte interactions in the lymph node. Science 281, 96–99 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Lee, S.K. et al. B cell priming for extrafollicular antibody responses requires Bcl-6 expression by T cells. J. Exp. Med. 208, 1377–1388 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramiscal, R.R. & Vinuesa, C.G. T-cell subsets in the germinal center. Immunol. Rev. 252, 146–155 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. Lüthje, K. et al. The development and fate of follicular helper T cells defined by an IL-21 reporter mouse. Nat. Immunol. 13, 491–498 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Shulman, Z. et al. T follicular helper cell dynamics in germinal centers. Science 341, 673–677 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Moriyama, S. et al. Sphingosine-1-phosphate receptor 2 is critical for follicular helper T cell retention in germinal centers. J. Exp. Med. 211, 1297–1305 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shulman, Z. et al. Dynamic signaling by T follicular helper cells during germinal center B cell selection. Science 345, 1058–1062 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wollenberg, I. et al. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 187, 4553–4560 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Linterman, M.A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Porwit-Ksiazek, A., Ksiazek, T. & Biberfeld, P. Leu 7+ (HNK-1+) cells. I. Selective compartmentalization of Leu 7+ cells with different immunophenotypes in lymphatic tissues and blood. Scand. J. Immunol. 18, 485–493 (1983).

    Article  CAS  PubMed  Google Scholar 

  43. Velardi, A., Mingari, M.C., Moretta, L. & Grossi, C.E. Functional analysis of cloned germinal center CD4+ cells with natural killer cell-related features. Divergence from typical T helper cells. J. Immunol. 137, 2808–2813 (1986).

    CAS  PubMed  Google Scholar 

  44. Ma, C.S. et al. Early commitment of naive human CD4(+) T cells to the T follicular helper (T(FH)) cell lineage is induced by IL-12. Immunol. Cell Biol. 87, 590–600 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Fazilleau, N., McHeyzer-Williams, L.J., Rosen, H. & McHeyzer-Williams, M.G. The function of follicular helper T cells is regulated by the strength of T cell antigen receptor binding. Nat. Immunol. 10, 375–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schmitt, N. et al. The cytokine TGF-β co-opts signaling via STAT3-STAT4 to promote the differentiation of human TFH cells. Nat. Immunol. 15, 856–865 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nakayamada, S. et al. Early Th1 cell differentiation is marked by a Tfh cell-like transition. Immunity 35, 919–931 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bauquet, A.T. et al. The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat. Immunol. 10, 167–175 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Nurieva, R.I. et al. Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 29, 138–149 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suto, A. et al. Development and characterization of IL-21-producing CD4+ T cells. J. Exp. Med. 205, 1369–1379 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Förster, R., Emrich, T., Kremmer, E. & Lipp, M. Expression of the G-protein–coupled receptor BLR1 defines mature, recirculating B cells and a subset of T-helper memory cells. Blood 84, 830–840 (1994).

    Article  PubMed  Google Scholar 

  52. Schaerli, P., Loetscher, P. & Moser, B. Cutting edge: induction of follicular homing precedes effector Th cell development. J. Immunol. 167, 6082–6086 (2001).

    Article  CAS  PubMed  Google Scholar 

  53. Schmitt, N., Bentebibel, S.E. & Ueno, H. Phenotype and functions of memory Tfh cells in human blood. Trends Immunol. 35, 436–442 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bentebibel, S.E. et al. Induction of ICOS+CXCR3+CXCR5+ TH cells correlates with antibody responses to influenza vaccination. Sci. Transl. Med. 5, 176ra132 (2013).

    Article  CAS  Google Scholar 

  55. Morita, R. et al. Human blood CXCR5(+)CD4(+) T cells are counterparts of T follicular cells and contain specific subsets that differentially support antibody secretion. Immunity 34, 108–121 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chevalier, N. et al. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. J. Immunol. 186, 5556–5568 (2011).

    Article  CAS  PubMed  Google Scholar 

  57. Simpson, N. et al. Expansion of circulating T cells resembling follicular helper T cells is a fixed phenotype that identifies a subset of severe systemic lupus erythematosus. Arthritis Rheum. 62, 234–244 (2010).

    Article  CAS  PubMed  Google Scholar 

  58. He, J. et al. Circulating precursor CCR7(lo)PD-1(hi) CXCR5(+) CD4(+) T cells indicate Tfh cell activity and promote antibody responses upon antigen reexposure. Immunity 39, 770–781 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Locci, M. et al. Human circulating PD-1(+)CXCR3(−)CXCR5(+) memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Boswell, K.L. et al. Loss of circulating CD4 T cells with B cell helper function during chronic HIV infection. PLoS Pathog. 10, e1003853 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kim, C.H. et al. Unique gene expression program of human germinal center T helper cells. Blood 104, 1952–1960 (2004).

    Article  CAS  PubMed  Google Scholar 

  62. Conley, M.E. & Casanova, J.L. Discovery of single-gene inborn errors of immunity by next generation sequencing. Curr. Opin. Immunol. 30, 17–23 (2014).

    Article  CAS  PubMed  Google Scholar 

  63. Bossaller, L. et al. ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J. Immunol. 177, 4927–4932 (2006).

    Article  CAS  PubMed  Google Scholar 

  64. Akiba, H. et al. The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J. Immunol. 175, 2340–2348 (2005).

    Article  CAS  PubMed  Google Scholar 

  65. Martini, H. et al. Importance of B cell co-stimulation in CD4(+) T cell differentiation: X-linked agammaglobulinaemia, a human model. Clin. Exp. Immunol. 164, 381–387 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lougaris, V., Badolato, R., Ferrari, S. & Plebani, A. Hyper immunoglobulin M syndrome due to CD40 deficiency: clinical, molecular, and immunological features. Immunol. Rev. 203, 48–66 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Kawabe, T. et al. The immune responses in CD40-deficient mice: impaired immunoglobulin class switching and germinal center formation. Immunity 1, 167–178 (1994).

    Article  CAS  PubMed  Google Scholar 

  68. Crotty, S., Kersh, E.N., Cannons, J., Schwartzberg, P.L. & Ahmed, R. SAP is required for generating long-term humoral immunity. Nature 421, 282–287 (2003).

    Article  CAS  PubMed  Google Scholar 

  69. Qi, H., Cannons, J.L., Klauschen, F., Schwartzberg, P.L. & Germain, R.N. SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 455, 764–769 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Cannons, J.L., Tangye, S.G. & Schwartzberg, P.L. SLAM family receptors and SAP adaptors in immunity. Annu. Rev. Immunol. 29, 665–705 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Klechevsky, E. et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 29, 497–510 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Caux, C. et al. CD34+ hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha: II. Functional analysis. Blood 90, 1458–1470 (1997).

    Article  CAS  PubMed  Google Scholar 

  73. Dubois, B. et al. Critical role of IL-12 in dendritic cell-induced differentiation of naive B lymphocytes. J. Immunol. 161, 2223–2231 (1998).

    CAS  PubMed  Google Scholar 

  74. Schmitt, N. et al. IL-12 receptor beta1 deficiency alters in vivo T follicular helper cell response in humans. Blood 121, 3375–3385 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmitt, N. et al. Human dendritic cells induce the differentiation of interleukin-21-producing T follicular helper-like cells through interleukin-12. Immunity 31, 158–169 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ma, C.S. et al. Functional STAT3 deficiency compromises the generation of human T follicular helper cells. Blood 119, 3997–4008 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mazerolles, F., Picard, C., Kracker, S., Fischer, A. & Durandy, A. Blood CD4+CD45RO+CXCR5+ T cells are decreased but partially functional in signal transducer and activator of transcription 3 deficiency. J. Allergy Clin. Immunol. 131, 1146–1156, e1141–e1145 (2013).

    Article  CAS  PubMed  Google Scholar 

  78. Avery, D.T. et al. B cell-intrinsic signaling through IL-21 receptor and STAT3 is required for establishing long-lived antibody responses in humans. J. Exp. Med. 207, 155–171, S151–S155 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yurasov, S. & Nussenzweig, M.C. Regulation of autoreactive antibodies. Curr. Opin. Rheumatol. 19, 421–426 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Di Zenzo, G. et al. Pemphigus autoantibodies generated through somatic mutations target the desmoglein-3 cis-interface. J. Clin. Invest. 122, 3781–3790 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vinuesa, C.G., Sanz, I. & Cook, M.C. Dysregulation of germinal centres in autoimmune disease. Nat. Rev. Immunol. 9, 845–857 (2009).

    Article  CAS  PubMed  Google Scholar 

  82. Sabouri, Z. et al. Redemption of autoantibodies on anergic B cells by variable-region glycosylation and mutation away from self-reactivity. Proc. Natl. Acad. Sci. USA 111, E2567–E2575 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Silva, D.G. et al. Anti-islet autoantibodies trigger autoimmune diabetes in the presence of an increased frequency of islet-reactive CD4 T cells. Diabetes 60, 2102–2111 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee, S.K. et al. Interferon-gamma excess leads to pathogenic accumulation of follicular helper T cells and germinal centers. Immunity 37, 880–892 (2012).

    Article  CAS  PubMed  Google Scholar 

  85. Leppek, K. et al. Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 153, 869–881 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. Pratama, A. et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 38, 669–680 (2013).

    Article  CAS  PubMed  Google Scholar 

  87. Vogel, K.U. et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 38, 655–668 (2013).

    Article  CAS  PubMed  Google Scholar 

  88. Linterman, M.A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yu, D. et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 450, 299–303 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Bubier, J.A. et al. A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc. Natl. Acad. Sci. USA 106, 1518–1523 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Linterman, M.A. et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 30, 228–241 (2009).

    Article  CAS  PubMed  Google Scholar 

  92. Serreze, D.V. et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J. Exp. Med. 184, 2049–2053 (1996).

    Article  CAS  PubMed  Google Scholar 

  93. Akashi, T. et al. Direct evidence for the contribution of B cells to the progression of insulitis and the development of diabetes in non-obese diabetic mice. Int. Immunol. 9, 1159–1164 (1997).

    Article  CAS  PubMed  Google Scholar 

  94. Noorchashm, H. et al. B-cells are required for the initiation of insulitis and sialitis in nonobese diabetic mice. Diabetes 46, 941–946 (1997).

    Article  CAS  PubMed  Google Scholar 

  95. Inoue, Y. et al. Activating Fc gamma receptors participate in the development of autoimmune diabetes in NOD mice. J. Immunol. 179, 764–774 (2007).

    Article  CAS  PubMed  Google Scholar 

  96. Harbers, S.O. et al. Antibody-enhanced cross-presentation of self antigen breaks T cell tolerance. J. Clin. Invest. 117, 1361–1369 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. McGuire, H.M. et al. A subset of interleukin-21+ chemokine receptor CCR9+ T helper cells target accessory organs of the digestive system in autoimmunity. Immunity 34, 602–615 (2011).

    Article  CAS  PubMed  Google Scholar 

  98. Arce, E. et al. Increased frequency of pre-germinal center b cells and plasma cell precursors in the blood of children with systemic lupus erythematosus. J. Immunol. 167, 2361–2369 (2001).

    Article  CAS  PubMed  Google Scholar 

  99. Jacobi, A.M. et al. Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 48, 1332–1342 (2003).

    Article  PubMed  Google Scholar 

  100. Yurasov, S. et al. Persistent expression of autoantibodies in SLE patients in remission. J. Exp. Med. 203, 2255–2261 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yurasov, S. et al. Defective B cell tolerance checkpoints in systemic lupus erythematosus. J. Exp. Med. 201, 703–711 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li, X.Y. et al. Role of the frequency of blood CD4(+) CXCR5(+) CCR6(+) T cells in autoimmunity in patients with Sjogren's syndrome. Biochem. Biophys. Res. Commun. 422, 238–244 (2012).

    Article  CAS  PubMed  Google Scholar 

  103. Luo, C. et al. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J. Neuroimmunol. 256, 55–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Wang, J. et al. High frequencies of activated B cells and T follicular helper cells are correlated with disease activity in patients with new-onset rheumatoid arthritis. Clin. Exp. Immunol. 174, 212–220 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu, R. et al. A regulatory effect of IL-21 on T follicular helper-like cell and B cell in rheumatoid arthritis. Arthritis Res. Ther. 14, R255 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zhu, C. et al. Increased frequency of follicular helper T cells in patients with autoimmune thyroid disease. J. Clin. Endocrinol. Metab. 97, 943–950 (2012).

    Article  CAS  PubMed  Google Scholar 

  107. Xu, X. et al. Inhibition of increased circulating Tfh cell by anti-CD20 monoclonal antibody in patients with type 1 diabetes. PLoS ONE 8, e79858 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Luo, C. et al. Expansion of circulating counterparts of follicular helper T cells in patients with myasthenia gravis. J. Neuroimmunol. 256, 55–61 (2013).

    Article  CAS  PubMed  Google Scholar 

  109. Le Coz, C. et al. Circulating TFH subset distribution is strongly affected in lupus patients with an active disease. PLoS ONE 8, e75319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Romme Christensen, J. et al. Systemic inflammation in progressive multiple sclerosis involves follicular T-helper, Th17- and activated B-cells and correlates with progression. PLoS ONE 8, e57820 (2013).

    Article  CAS  PubMed  Google Scholar 

  111. Hauser, S.L. et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N. Engl. J. Med. 358, 676–688 (2008).

    Article  CAS  PubMed  Google Scholar 

  112. Magliozzi, R. et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 130, 1089–1104 (2007).

    Article  PubMed  Google Scholar 

  113. Pitzalis, C., Jones, G.W., Bombardieri, M. & Jones, S.A. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nat. Rev. Immunol. 14, 447–462 (2014).

    Article  CAS  PubMed  Google Scholar 

  114. Liarski, V.M. et al. Cell distance mapping identifies functional T follicular helper cells in inflamed human renal tissue. Sci. Transl. Med. 6, 230ra246 (2014).

    Article  CAS  Google Scholar 

  115. Peters, A. et al. Th17 cells induce ectopic lymphoid follicles in central nervous system tissue inflammation. Immunity 35, 986–996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wu, H.J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Ekland, E.H., Forster, R., Lipp, M. & Cyster, J.G. Requirements for follicular exclusion and competitive elimination of autoantigen-binding B cells. J. Immunol. 172, 4700–4708 (2004).

    Article  CAS  PubMed  Google Scholar 

  118. Stranger, B.E. & De Jager, P.L. Coordinating GWAS results with gene expression in a systems immunologic paradigm in autoimmunity. Curr. Opin. Immunol. 24, 544–551 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hambleton, S. et al. IRF8 mutations and human dendritic-cell immunodeficiency. N. Engl. J. Med. 365, 127–138 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. Yoshida, Y. et al. The transcription factor IRF8 activates integrin-mediated TGF-beta signaling and promotes neuroinflammation. Immunity 40, 187–198 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Brocker, T. et al. CD4 T cell traffic control: in vivo evidence that ligation of OX40 on CD4 T cells by OX40-ligand expressed on dendritic cells leads to the accumulation of CD4 T cells in B follicles. Eur. J. Immunol. 29, 1610–1616 (1999).

    Article  CAS  PubMed  Google Scholar 

  123. Walker, L.S. et al. Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J. Exp. Med. 190, 1115–1122 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kim, M.Y. et al. CD4(+)CD3(−) accessory cells costimulate primed CD4 T cells through OX40 and CD30 at sites where T cells collaborate with B cells. Immunity 18, 643–654 (2003).

    Article  CAS  PubMed  Google Scholar 

  125. Maine, C.J., Marquardt, K., Cheung, J. & Sherman, L.A. PTPN22 controls the germinal center by influencing the numbers and activity of T follicular helper cells. J. Immunol. 192, 1415–1424 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).

    Article  CAS  PubMed  Google Scholar 

  127. Fairfax, B.P. et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Federico, M. et al. Clinicopathologic characteristics of angioimmunoblastic T-cell lymphoma: analysis of the international peripheral T-cell lymphoma project. J. Clin. Oncol. 31, 240–246 (2013).

    Article  CAS  PubMed  Google Scholar 

  130. de Leval, L., Gisselbrecht, C. & Gaulard, P. Advances in the understanding and management of angioimmunoblastic T-cell lymphoma. Br. J. Haematol. 148, 673–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  131. Ellyard, J.I. et al. Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 120, 812–821 (2012).

    Article  PubMed  Google Scholar 

  132. Sakata-Yanagimoto, M. et al. Somatic RHOA mutation in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 171–175 (2014).

    Article  CAS  PubMed  Google Scholar 

  133. Odejide, O. et al. A targeted mutational landscape of angioimmunoblastic T-cell lymphoma. Blood 123, 1293–1296 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Yoo, H.Y. et al. A recurrent inactivating mutation in RHOA GTPase in angioimmunoblastic T cell lymphoma. Nat. Genet. 46, 371–375 (2014).

    Article  CAS  PubMed  Google Scholar 

  135. Lemonnier, F. et al. Recurrent TET2 mutations in peripheral T-cell lymphomas correlate with TFH-like features and adverse clinical parameters. Blood 120, 1466–1469 (2012).

    Article  CAS  PubMed  Google Scholar 

  136. Cetinözman, F., Jansen, P.M. & Willemze, R. Expression of programmed death-1 in primary cutaneous CD4-positive small/medium-sized pleomorphic T-cell lymphoma, cutaneous pseudo-T-cell lymphoma, and other types of cutaneous T-cell lymphoma. Am. J. Surg. Pathol. 36, 109–116 (2012).

    Article  PubMed  Google Scholar 

  137. Meyerson, H.J. et al. Follicular center helper T-cell (TFH) marker positive mycosis fungoides/Sezary syndrome. Mod. Pathol. 26, 32–43 (2013).

    Article  CAS  PubMed  Google Scholar 

  138. Rodríguez Pinilla, S.M. et al. Primary cutaneous CD4+ small/medium-sized pleomorphic T-cell lymphoma expresses follicular T-cell markers. Am. J. Surg. Pathol. 33, 81–90 (2009).

    Article  PubMed  Google Scholar 

  139. Park, J.H., Han, J.H., Kang, H.Y., Lee, E.S. & Kim, Y.C. Expression of follicular helper T-cell markers in primary cutaneous T-cell lymphoma. Am. J. Dermatopathol. 36, 465–470 (2014).

    Article  PubMed  Google Scholar 

  140. Lee, A.M. et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J. Clin. Oncol. 24, 5052–5059 (2006).

    Article  CAS  PubMed  Google Scholar 

  141. Shaffer, A.L., Rosenwald, A. & Staudt, L.M. Lymphoid malignancies: the dark side of B-cell differentiation. Nat. Rev. Immunol. 2, 920–932 (2002).

    Article  CAS  PubMed  Google Scholar 

  142. Dave, S.S. et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 351, 2159–2169 (2004).

    Article  CAS  PubMed  Google Scholar 

  143. Glas, A.M. et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J. Clin. Oncol. 25, 390–398 (2007).

    Article  CAS  PubMed  Google Scholar 

  144. Pangault, C. et al. Follicular lymphoma cell niche: identification of a preeminent IL-4-dependent T(FH)-B cell axis. Leukemia 24, 2080–2089 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Rawal, S. et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J. Immunol. 190, 6681–6693 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Amé-Thomas, P. et al. Characterization of intratumoral follicular helper T cells in follicular lymphoma: role in the survival of malignant B cells. Leukemia 26, 1053–1063 (2012).

    Article  CAS  PubMed  Google Scholar 

  147. Carreras, J. et al. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 108, 2957–2964 (2006).

    Article  CAS  PubMed  Google Scholar 

  148. Farinha, P. et al. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115, 289–295 (2010).

    Article  CAS  PubMed  Google Scholar 

  149. Yang, Z.Z., Novak, A.J., Ziesmer, S.C., Witzig, T.E. & Ansell, S.M. Attenuation of CD8(+) T-cell function by CD4(+)CD25(+) regulatory T cells in B-cell non-Hodgkin's lymphoma. Cancer Res. 66, 10145–10152 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Ahearne, M.J. et al. Enhancement of CD154/IL4 proliferation by the T follicular helper (Tfh) cytokine, IL21 and increased numbers of circulating cells resembling Tfh cells in chronic lymphocytic leukaemia. Br. J. Haematol. 162, 360–370 (2013).

    Article  CAS  PubMed  Google Scholar 

  151. Cha, Z. et al. Association of peripheral CD4+ CXCR5+ T cells with chronic lymphocytic leukemia. Tumour Biol. 34, 3579–3585 (2013).

    Article  CAS  PubMed  Google Scholar 

  152. Pascutti, M.F. et al. IL-21 and CD40L signals from autologous T cells can induce antigen-independent proliferation of CLL cells. Blood 122, 3010–3019 (2013).

    Article  CAS  PubMed  Google Scholar 

  153. Gu-Trantien, C. et al. CD4(+) follicular helper T cell infiltration predicts breast cancer survival. J. Clin. Invest. 123, 2873–2892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang, Z. et al. Circulating follicular helper T cells in Crohn's disease (CD) and CD-associated colorectal cancer. Tumour Biol. 35, 9355–9359 (2014).

    Article  CAS  PubMed  Google Scholar 

  155. Shi, W. et al. Dysregulation of circulating follicular helper T cells in nonsmall cell lung cancer. DNA Cell Biol. 33, 355–360 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Zhang, M. et al. Thymic TFH cells involved in the pathogenesis of myasthenia gravis with thymoma. Exp. Neurol. 254, 200–205 (2014).

    Article  CAS  PubMed  Google Scholar 

  157. Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Petrovas, C. et al. CD4 T follicular helper cell dynamics during SIV infection. J. Clin. Invest. 122, 3281–3294 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hong, J.J., Amancha, P.K., Rogers, K., Ansari, A.A. & Villinger, F. Spatial alterations between CD4(+) T follicular helper, B, and CD8(+) T cells during simian immunodeficiency virus infection: T/B cell homeostasis, activation, and potential mechanism for viral escape. J. Immunol. 188, 3247–3256 (2012).

    Article  CAS  PubMed  Google Scholar 

  160. Perreau, M. et al. Follicular helper T cells serve as the major CD4 T cell compartment for HIV-1 infection, replication, and production. J. Exp. Med. 210, 143–156 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Lindqvist, M. et al. Expansion of HIV-specific T follicular helper cells in chronic HIV infection. J. Clin. Invest. 122, 3271–3280 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Cubas, R.A. et al. Inadequate T follicular cell help impairs B cell immunity during HIV infection. Nat. Med. 19, 494–499 (2013).

    Article  CAS  PubMed  Google Scholar 

  163. Keele, B.F. et al. Characterization of the follicular dendritic cell reservoir of human immunodeficiency virus type 1. J. Virol. 82, 5548–5561 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Tenner-Racz, K., von Stemm, A.M., Guhlk, B., Schmitz, J. & Racz, P. Are follicular dendritic cells, macrophages and interdigitating cells of the lymphoid tissue productively infected by HIV? Res. Virol. 145, 177–182 (1994).

    Article  CAS  PubMed  Google Scholar 

  165. Haase, A.T. Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues. Annu. Rev. Immunol. 17, 625–656 (1999).

    Article  CAS  PubMed  Google Scholar 

  166. Gratton, S., Cheynier, R., Dumaurier, M.J., Oksenhendler, E. & Wain-Hobson, S. Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc. Natl. Acad. Sci. USA 97, 14566–14571 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Ringler, D.J. et al. Cellular localization of simian immunodeficiency virus in lymphoid tissues. I. Immunohistochemistry and electron microscopy. Am. J. Pathol. 134, 373–383 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Harker, J.A., Lewis, G.M., Mack, L. & Zuniga, E.I. Late interleukin-6 escalates T follicular helper cell responses and controls a chronic viral infection. Science 334, 825–829 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Vinuesa, C.G. HIV and T follicular helper cells: a dangerous relationship. J. Clin. Invest. 122, 3059–3062 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Moir, S. & Fauci, A.S. B cells in HIV infection and disease. Nat. Rev. Immunol. 9, 235–245 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Linterman, M.A. et al. Follicular helper T cells are required for systemic autoimmunity. J. Exp. Med. 206, 561–576 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. West, A.P. Jr. et al. Structural insights on the role of antibodies in HIV-1 vaccine and therapy. Cell 156, 633–648 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ahlers, J.D. All eyes on the next generation of HIV vaccines: strategies for inducing a broadly neutralizing antibody response. Discov. Med. 17, 187–199 (2014).

    PubMed  Google Scholar 

  174. Haynes, B.F. et al. Immune-correlates analysis of an HIV-1 vaccine efficacy trial. N. Engl. J. Med. 366, 1275–1286 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Locci, M. et al. Human circulating PD-(+)1CXCR3(−)CXCR5(+) memory Tfh cells are highly functional and correlate with broadly neutralizing HIV antibody responses. Immunity 39, 758–769 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Victora, G.D. et al. Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 143, 592–605 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by the US National Institutes of Health (U19-AI057234, U19-AI082715 and U19-AI089987), the Alliance for Lupus Research, the Baylor Health Care System (H.U.) and the Australian National Health and Medical Research Council (C.G.V.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hideki Ueno, Jacques Banchereau or Carola G Vinuesa.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueno, H., Banchereau, J. & Vinuesa, C. Pathophysiology of T follicular helper cells in humans and mice. Nat Immunol 16, 142–152 (2015). https://doi.org/10.1038/ni.3054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.3054

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing