Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response

Abstract

Assembly of the NLRP3 inflammasome activates caspase-1 and mediates the processing and release of the leaderless cytokine IL-1β and thereby serves a central role in the inflammatory response and in diverse human diseases. Here we found that upon activation of caspase-1, oligomeric NLRP3 inflammasome particles were released from macrophages. Recombinant oligomeric protein particles composed of the adaptor ASC or the p.D303N mutant form of NLRP3 associated with cryopyrin-associated periodic syndromes (CAPS) stimulated further activation of caspase-1 extracellularly, as well as intracellularly after phagocytosis by surrounding macrophages. We found oligomeric ASC particles in the serum of patients with active CAPS but not in that of patients with other inherited autoinflammatory diseases. Our findings support a model whereby the NLRP3 inflammasome, acting as an extracellular oligomeric complex, amplifies the inflammatory response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The activation of inflammasomes induces the release of NLRP3 and ASC.
Figure 2: Extracellular inflammasomes are oligomeric particulate complexes.
Figure 3: ASC specks activate extracellular caspase-1.
Figure 4: Extracellular ASC specks activate caspase-1 in macrophages.
Figure 5: The NLRP3(p.D303N) mutant forms functional oligomeric specks that nucleate ASC.
Figure 6: Extracellular NLRP3(p.D303N) particles form functional inflammasomes in macrophages after being internalized.
Figure 7: Extracellular inflammasome particles are present in the serum of patients with CAPS.

Similar content being viewed by others

References

  1. Dinarello, C.A. Immunological and inflammatory functions of the interleukin-1 family. Annu. Rev. Immunol. 27, 519–550 (2009).

    CAS  PubMed  Google Scholar 

  2. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    CAS  PubMed  Google Scholar 

  3. Lopez-Castejon, G. & Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22, 189–195 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Dinarello, C.A., Donath, M.Y. & Mandrup-Poulsen, T. Role of IL-1β in type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 17, 314–321 (2010).

    CAS  PubMed  Google Scholar 

  5. Neven, B. et al. Molecular basis of the spectral expression of CIAS1 mutations associated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS, and FCU. Blood 103, 2809–2815 (2004).

    CAS  PubMed  Google Scholar 

  6. Martinon, F., Pétrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Duewell, P. et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464, 1357–1361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cai, X. et al. Prion-like polymerization underlies signal transduction in antiviral immune defense and inflammasomeactivation. Cell 156, 1207–1222 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lu, A. et al. Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell 156, 1193–1206 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    CAS  PubMed  Google Scholar 

  11. Compan, V. et al. Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37, 487–500 (2012).

    CAS  PubMed  Google Scholar 

  12. Halle, A. et al. The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat. Immunol. 9, 857–865 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Babelova, A. et al. Biglycan, a danger signal that activates the NLRP3 inflammasome via toll-like and P2X receptors. J. Biol. Chem. 284, 24035–24048 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Yazdi, A.S. et al. Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc. Natl. Acad. Sci. USA 107, 19449–19454 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rajamäki, K. et al. Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J. Biol. Chem. 288, 13410–13419 (2013).

    PubMed  PubMed Central  Google Scholar 

  17. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat. Immunol. 9, 847–856 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez-Castejon, G. et al. Deubiquitinases regulate the activity of caspase-1 and interleukin-1β secretion via assembly of the inflammasome. J. Biol. Chem. 288, 2721–2733 (2013).

    CAS  PubMed  Google Scholar 

  19. Shimada, K. et al. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36, 401–414 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2009).

    PubMed  Google Scholar 

  21. Muñoz-Planillo, R. et al. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38, 1142–1153 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. Murakami, T. et al. Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc. Natl. Acad. Sci. USA 109, 11282–11287 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Lamkanfi, M. et al. Inflammasome-dependent release of the alarmin HMGB1 in endotoxemia. J. Immunol. 185, 4385–4392 (2010).

    CAS  PubMed  Google Scholar 

  24. Keller, M., Rüegg, A., Werner, S. & Beer, H.-D. Active caspase-1 is a regulator of unconventional protein secretion. Cell 132, 818–831 (2008).

    CAS  PubMed  Google Scholar 

  25. Pétrilli, V. et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ. 14, 1583–1589 (2007).

    PubMed  Google Scholar 

  26. Kahlenberg, J.M., Lundberg, K.C., Kertesy, S.B., Qu, Y. & Dubyak, G.R. Potentiation of caspase-1 activation by the P2X7 receptor is dependent on TLR signals and requires NF-κB-driven protein synthesis. J. Immunol. 175, 7611–7622 (2005).

    CAS  PubMed  Google Scholar 

  27. Miao, E.A., Rajan, J.V. & Aderem, A. Caspase-1-induced pyroptotic cell death. Immunol. Rev. 243, 206–214 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Masters, S.L., Simon, A., Aksentijevich, I. & Kastner, D.L. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease. Annu. Rev. Immunol. 27, 621–668 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Gross, O. et al. Inflammasome activators induce interleukin-1alpha secretion via distinct pathways with differential requirement for the protease function of caspase-1. Immunity 36, 388–400 (2012).

    CAS  PubMed  Google Scholar 

  30. Miao, E.A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat. Immunol. 11, 1136–1142 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Balci-Peynircioglu, B. et al. Expression of ASC in renal tissues of familial mediterranean fever patients with amyloidosis: postulating a role for ASC in AA type amyloid deposition. Exp. Biol. Med. (Maywood) 233, 1324–1333 (2008).

    CAS  Google Scholar 

  32. Shi, C.S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–263 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    CAS  PubMed  Google Scholar 

  34. Dupont, N. et al. Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1β. EMBO J. 30, 4701–4711 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    CAS  PubMed  Google Scholar 

  36. Shmagel, K.V. & Chereshnev, V.A. Molecular bases of immune complex pathology. Biochemistry (Mosc.) 74, 469–479 (2009).

    CAS  Google Scholar 

  37. Kahlenberg, J.M., Carmona-Rivera, C., Smith, C.K. & Kaplan, M.J. Neutrophil extracellular trap-associated protein activation of the NLRP3 inflammasome is enhanced in lupus macrophages. J. Immunol. 190, 1217–1226 (2013).

    CAS  PubMed  Google Scholar 

  38. Garcia-Calvo, M. et al. Purification and catalytic properties of human caspase family members. Cell Death Differ. 6, 362–369 (1999).

    CAS  PubMed  Google Scholar 

  39. Fernandes-Alnemri, T. et al. The pyroptosome: a supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14, 1590–1604 (2007).

    CAS  PubMed  Google Scholar 

  40. Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Tanaka, N. et al. High incidence of NLRP3 somatic mosaicism in patients with chronic infantile neurologic, cutaneous, articular syndrome: results of an International Multicenter Collaborative Study. Arthritis Rheum. 63, 3625–3632 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Nakagawa, K. et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes. Ann. Rheum. Dis. 10.1136/annrheumdis-2013-204361 (10 December 2013).

  43. Hoffman, H.M. et al. Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364, 1779–1785 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hoffman, H.M. et al. Efficacy and safety of rilonacept (interleukin-1 Trap) in patients with cryopyrin-associated periodic syndromes: results from two sequential placebo-controlled studies. Arthritis Rheum. 58, 2443–2452 (2008).

    CAS  PubMed  Google Scholar 

  45. Lachmann, H.J. et al. Use of canakinumab in the cryopyrin-associated periodic syndrome. N. Engl. J. Med. 360, 2416–2425 (2009).

    CAS  PubMed  Google Scholar 

  46. Adamczak, S. et al. Inflammasome proteins in cerebrospinal fluid of brain-injured patients as biomarkers of functional outcome: clinical article. J. Neurosurg. 117, 1119–1125 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    CAS  PubMed  Google Scholar 

  48. Kuida, K. et al. Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267, 2000–2003 (1995).

    CAS  PubMed  Google Scholar 

  49. Fernandes-Alnemri, T. & Alnemri, E.S. Assembly, purification, and assay of the activity of the ASC pyroptosome. Methods Enzymol. 442, 251–270 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Latz (Institute of Innate Immunity) for immortalized ASC-mCherry, ASC-deficient and NLRP3-deficient mouse bone marrow macrophages and for the expression vector encoding red fluorescent protein–tagged ASC; V. Dixit (Genentech) for Pycard−/− mice; M.C. Baños and J.J. Martínez for technical assistance with both molecular and cellular analyses; L. Martinez-Alarcón for extraction of blood from healthy donors; M. Martínez-Villanueva for analysis of CRP; and C. de Torre for support with proteomics. Supported by the Wellcome Trust (V.C.), Instituto Salud Carlos III (CD12/00523 and CD13/00059 to F.M.-S. and J.A.-I.), Instituto Salud Carlos III–Fondo Europeo de Desarrollo Regional (EMER07/049, PS09/00120 and PI13/00174 to P.P. and PS09/01182 to J.Y.), Fundación Séneca (11922/PI/09 to P.P.) and Fundación Mutua Madrileña (ID98FMM013 to A.B.-M.).

Author information

Authors and Affiliations

Authors

Contributions

A.B.-M., F.M.-S., A.I.G., C.M.M., J.A.-I., V.C. and M.B.-C., execution of experiments; J.Y., E.R.-O., J.A., S.B., I.C. and J.I.A., provision of human samples and mutant mice; A.B.-M., F.M.-S., A.I.G., V.C., D.B., J.I.A. and P.P., analysis and interpretation of data; A.B.-M., F.M.-S., V.C., D.B., J.I.A. and P.P., manuscript preparation; and P.P., conception, design and supervision of this study.

Corresponding author

Correspondence to Pablo Pelegrín.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 597 kb)

Supplementary Table 1

Genotypes and serum inflammatory markers of patients with inherited autoinflammatory syndromes. (PDF 195 kb)

NLRP3 activation induces the release of ASC particles.

Time-lapse fluorescence microscopy of immortalized mouse BMDMs expressing ASC-mCherry primed in coverslips with LPS (1 μg/ml, 2h) and then perfused with nigericin (20 μM) with a flow rate of 1 ml/min. Frames are recorded every 20 sec, the real length of the video corresponds to the 10 min where the ASC speck is formed and released. Nigericin flow was opened after 2 min of basal recording and from that point nigericin concentration gradually increased in the recording chamber at the flow rate used. In these conditions ASC speck formation was observed after 6 min of nigericin flow opening and the ASC speck release occurred 5 min after formation. (AVI 182 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baroja-Mazo, A., Martín-Sánchez, F., Gomez, A. et al. The NLRP3 inflammasome is released as a particulate danger signal that amplifies the inflammatory response. Nat Immunol 15, 738–748 (2014). https://doi.org/10.1038/ni.2919

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2919

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research