Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Origin of monocytes and macrophages in a committed progenitor

Abstract

Monocytes, macrophages and dendritic cells (DCs) are developmentally related regulators of the immune system that share the monocyte-macrophage DC progenitor (MDP) as a common precursor. Unlike differentiation into DCs, the distal pathways for differentiation into monocytes and monocyte-derived macrophages are not fully elucidated. We have now demonstrated the existence of a clonogenic, monocyte- and macrophage-restricted progenitor cell derived from the MDP. This progenitor was a Ly6C+ proliferating cell present in the bone marrow and spleen that generated the major monocyte subsets and macrophages, but not DCs or neutrophils. By in-depth quantitative proteomics, we characterized changes in the proteome during monocyte differentiation, which provided insight into the molecular principles of developing monocytes, such as their functional maturation. Thus, we found that monocytes and macrophages were renewed independently of DCs from a committed progenitor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of the cMoP in bone marrow by surface-marker expression and proliferative activity.
Figure 2: Identification of the cMoP in the spleen.
Figure 3: Colony formation, developmental origin and potential of the cMoP in vitro.
Figure 4: Developmental origin and potential of the cMoP in vivo.
Figure 5: Differentiation of macrophages from the cMoP in vivo.
Figure 6: Global proteomice analysis of the cMoP, the MDP and Ly6Chi monocytes.
Figure 7: Proteomics-based identification of phenotypic and functional differences among the MDP, the cMoP and Ly6Chi monocytes.
Figure 8: Expression of monocyte subset-specific genes in monocytes and their progenitors.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. van Furth, R. & Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 128, 415–435 (1968).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Auffray, C., Sieweke, M.H. & Geissmann, F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu. Rev. Immunol. 27, 669–692 (2009).

    Article  CAS  PubMed  Google Scholar 

  3. Serbina, N.V., Jia, T., Hohl, T.M. & Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Swirski, F.K. et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science 325, 612–616 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Martin, A.P. et al. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 57, 3025–3033 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Qian, B.Z. et al. CCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasis. Nature 475, 222–225 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Geissmann, F., Jung, S. & Littman, D.R. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 19, 71–82 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Passlick, B., Flieger, D. & Ziegler-Heitbrock, H.W. Identification and characterization of a novel monocyte subpopulation in human peripheral blood. Blood 74, 2527–2534 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. Ingersoll, M.A. et al. Comparison of gene expression profiles between human and mouse monocyte subsets. Blood 115, e10–e19 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ziegler-Heitbrock, L. et al. Nomenclature of monocytes and dendritic cells in blood. Blood 116, e74–e80 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Auffray, C. et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 317, 666–670 (2007).

    Article  CAS  PubMed  Google Scholar 

  14. Schulz, C. et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336, 86–90 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Ginhoux, F. et al. Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330, 841–845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac-derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheong, C. et al. Microbial stimulation fully differentiates monocytes to DC-SIGN/CD209+ dendritic cells for immune T cell areas. Cell 143, 416–429 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van Furth, R., Hirsch, J.G. & Fedorko, M.E. Morphology and peroxidase cytochemistry of mouse promonocytes, monocytes, and macrophages. J. Exp. Med. 132, 794–812 (1970).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goud, T.J., Schotte, C. & van Furth, R. Identification and characterization of the monoblast in mononuclear phagocyte colonies grown in vitro. J. Exp. Med. 142, 1180–1199 (1975).

    Article  CAS  PubMed  Google Scholar 

  21. Geissmann, F., Gordon, S., Hume, D.A., Mowat, A.M. & Randolph, G.J. Unravelling mononuclear phagocyte heterogeneity. Nat. Rev. Immunol. 10, 453–460 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Fogg, D.K. et al. A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science 311, 83–87 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Auffray, C. et al. CX3CR1+CD115+CD135+ common macrophage/DC precursors and the role of CX3CR1 in their response to inflammation. J. Exp. Med. 206, 595–606 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Onai, N. et al. Identification of clonogenic common Flt3+M-CSFR+ plasmacytoid and conventional dendritic cell progenitors in mouse bone marrow. Nat. Immunol. 8, 1207–1216 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Naik, S.H. et al. Development of plasmacytoid and conventional dendritic cell subtypes from single precursor cells derived in vitro and in vivo. Nat. Immunol. 8, 1217–1226 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Liu, K. et al. In vivo analysis of dendritic cell development and homeostasis. Science 324, 392–397 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Saha, P. & Geissmann, F. Toward a functional characterization of blood monocytes. Immunol. Cell Biol. 89, 2–4 (2011).

    Article  PubMed  Google Scholar 

  28. Merad, M. & Manz, M.G. Dendritic cell homeostasis. Blood 113, 3418–3427 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Waskow, C. et al. The receptor tyrosine kinase Flt3 is required for dendritic cell development in peripheral lymphoid tissues. Nat. Immunol. 9, 676–683 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kiel, M.J. & Morrison, S.J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Leuschner, F. et al. Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J. Exp. Med. 209, 123–137 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sallusto, F. & Lanzavecchia, A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor α. J. Exp. Med. 179, 1109–1118 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. Akashi, K., Traver, D., Miyamoto, T. & Weissman, I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193–197 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Varol, C. et al. Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J. Exp. Med. 204, 171–180 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heng, T.S. & Painter, M.W. The Immunological Genome Project: networks of gene expression in immune cells. Nat. Immunol. 9, 1091–1094 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. Sardiello, M. et al. A gene network regulating lysosomal biogenesis and function. Science 325, 473–477 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Krausgruber, T. et al. IRF5 promotes inflammatory macrophage polarization and TH1–TH17 responses. Nat. Immunol. 12, 231–238 (2011).

    Article  CAS  PubMed  Google Scholar 

  38. Moran, A.E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J. Exp. Med. 208, 1279–1289 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hanna, R.N. et al. The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C− monocytes. Nat. Immunol. 12, 778–785 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sunderkötter, C. et al. Subpopulations of mouse blood monocytes differ in maturation stage and inflammatory response. J. Immunol. 172, 4410–4417 (2004).

    Article  PubMed  Google Scholar 

  41. Ancuta, P. et al. Transcriptional profiling reveals developmental relationship and distinct biological functions of CD16+ and CD16− monocyte subsets. BMC Genomics 10, 403 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Garcia, M.R. et al. Monocytic suppressive cells mediate cardiovascular transplantation tolerance in mice. J. Clin. Invest. 120, 2486–2496 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller, J.C. et al. Deciphering the transcriptional network of the dendritic cell lineage. Nat. Immunol. 13, 888–899 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shen, F.W. et al. Cloning of Ly-5 cDNA. Proc. Natl. Acad. Sci. USA 82, 7360–7363 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim, J.M., Rasmussen, J.P. & Rudensky, A.Y. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat. Immunol. 8, 191–197 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Jung, S. et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol. Cell Biol. 20, 4106–4114 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A.J. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).

    Article  CAS  PubMed  Google Scholar 

  49. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  50. Nikolsky, Y., Ekins, S., Nikolskaya, T. & Bugrim, A. A novel method for generation of signature networks as biomarkers from complex high throughput data. Toxicol. Lett. 158, 20–29 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Rudensky (Memorial Sloan-Kettering Cancer Center, New York) for B6N.129(Cg)-Foxp3tm3Ayr mice; M. Platten (German Cancer Research Center) for Cx3cr1-eGFP reporter mice; F. Rosenbauer and S. Ghani for help with the in vitro differentiation assay; the Central Animal Laboratory, Flow Cytometry and Light Microscopy core facilities of the German Cancer Research Center, as well as the European Molecular Biology Laboratory Proteomics Core Facility, for training and support; H.R. Rodewald, T. Feyerabend and B. Kyewski for support and discussions; P. Pyl for statistical advice; K. Lobbes, A. Schmälzle and C. Maul for technical support; and the Immunological Genome Project Consortium for assembled data35,44. Supported by the Helmholtz Association of German Research Centers (J.He. and M.M.B.; and HZ-NG-505 to M.F.) and the Netherlands Organization for Scientific Research (to J.K.).

Author information

Authors and Affiliations

Authors

Contributions

J.He., D.M.R., J.Ha., J.K. and M.F. designed experiments; J.He., D.M.R., J.Ha., M.M.B. and A.-C.J. did experiments; J.Ha. and J.K. did mass spectrometry; and J.He., D.M.R., J.Ha., M.M.B., J.K. and M.F. analyzed data and wrote the manuscript.

Corresponding author

Correspondence to Markus Feuerer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Figures 1–8 and Supplementary Tables 1, 2, 5, 6 and 7 (PDF 2043 kb)

Supplementary Table 3

Full proteomics table for a total of 5967 proteins identified in the cMoP, MDP and Ly6Chigh monocyte proteome (XLSX 5235 kb)

Supplementary Table 4

GO process enrichment for comparison of the cMoP (upper part) and Ly6Chigh monocytes (lower part) (XLSX 39 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hettinger, J., Richards, D., Hansson, J. et al. Origin of monocytes and macrophages in a committed progenitor. Nat Immunol 14, 821–830 (2013). https://doi.org/10.1038/ni.2638

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2638

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing