Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Regulatory T cells in nonlymphoid tissues

Abstract

Both Foxp3+CD4+ regulatory T cells (Treg cells) and local immune responses in nonlymphoid tissues have long been recognized as important elements of a well-orchestrated immune system, but only recently have these two fields of study begun to intersect. There is growing evidence that Treg cells are present in various nonlymphoid tissues in health and disease, that they have a unique phenotype and that their functions go beyond the classical modulation of immune responses. Thus, tissue Treg cells might add yet another level to classification of the Treg cell compartment into functional and/or phenotypic subtypes. In this Review, we summarize recent findings in this new field, discussing knowns and unknowns about the origin, phenotype, function and memory of nonlymphoid tissue-resident Treg cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms involved in the accumulation of Treg cells in nonlymphoid tissues.
Figure 2: Functions of tissue-resident Treg cells.

Similar content being viewed by others

References

  1. Josefowicz, S.Z., Lu, L.F., Rudensky, A.Y. & Regulatory, T. Cells: mechanisms of differentiation and function. Annu. Rev. Immunol. 30, 531–564 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Feuerer, M., Hill, J.A., Mathis, D. & Benoist, C. Foxp3+ regulatory T cells: differentiation, specification, subphenotypes. Nat. Immunol. 10, 689–695 (2009).

    CAS  PubMed  Google Scholar 

  3. Zheng, Y. et al. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458, 351–356 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Koch, M.A. et al. The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat. Immunol. 10, 595–602 (2009).In references 3 and 4, the concept is introduced that T reg cells adapt their phenotype to match the type of immune response they are controlling, sometimes sharing key segments of the transcriptional program with co-residing T effector cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaudhry, A. et al. CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326, 986–991 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hall, A.O. et al. The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37, 511–523 (2012).

    PubMed  PubMed Central  Google Scholar 

  7. Darce, J. et al. An N-terminal mutation of the Foxp3 transcription factor alleviates arthritis but exacerbates diabetes. Immunity 36, 731–741 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Chung, Y. et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 17, 983–988 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Linterman, M.A. et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 17, 975–982 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Koch, M.A. et al. T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta2. Immunity 37, 501–510 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Sather, B.D. et al. Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific inflammatory disease. J. Exp. Med. 204, 1335–1347 (2007).This report described the homing receptor expression and tissue localization of T reg cells in the steady state, and showed that impairing T reg cell migration to nonlymphoid tissues results in the development of tissue-specific inflammatory disease.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).This study reported for the first time the presence of a unique population of T reg cells in male visceral adipose tissue and their role in controlling metabolic parameters.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Herman, A.E., Freeman, G.J., Mathis, D. & Benoist, C. CD4+CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J. Exp. Med. 199, 1479–1489 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen, L.T., Jacobs, J., Mathis, D. & Benoist, C. Where FoxP3-dependent regulatory T cells impinge on the development of inflammatory arthritis. Arthritis Rheum. 56, 509–520 (2007).

    CAS  PubMed  Google Scholar 

  15. Suffia, I.J. et al. Infected site-restricted Foxp3+ natural regulatory T cells are specific for microbial antigens. J. Exp. Med. 203, 777–788 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee, I. et al. Recruitment of Foxp3+ T regulatory cells mediating allograft tolerance depends on the CCR4 chemokine receptor. J. Exp. Med. 201, 1037–1044 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Samstein, R.M. et al. Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150, 29–38 (2012).This work demonstrated that peripheral T reg cells specific for paternal antigens accumulate in the placenta and prevent fetal resorption, and suggested that extrathymic differentiation of T reg cells emerged in placental animals to enforce maternal-fetal tolerance.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Tilburgs, T. et al. Evidence for a selective migration of fetus-specific CD4+CD25bright regulatory T cells from the peripheral blood to the decidua in human pregnancy. J. Immunol. 180, 5737–5745 (2008).

    CAS  PubMed  Google Scholar 

  19. Tanchot, C. et al. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 6, 147–157 (2013).

    CAS  PubMed  Google Scholar 

  20. de Boer, O.J. et al. Low numbers of FOXP3 positive regulatory T cells are present in all developmental stages of human atherosclerotic lesions. PLoS ONE 2, e779 (2007).

    PubMed  PubMed Central  Google Scholar 

  21. Meng, X. et al. Statins induce the accumulation of regulatory T cells in atherosclerotic plaque. Mol. Med. 18, 598–605 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Cretney, E., Kallies, A. & Nutt, S.L. Differentiation and function of Foxp3(+) effector regulatory T cells. Trends Immunol. 34, 74–80 (2013).

    CAS  PubMed  Google Scholar 

  23. Cipolletta, D. et al. PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486, 549–553 (2012).This report identified PPAR-γ as a crucial molecular orchestrator of the accumulation, phenotype and function of T reg cells in male visceral adipose tissue, demonstrating that a specific transcription factor can drive the unique characteristics of a particular tissue T reg population.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tontonoz, P. & Spiegelman, B.M. Fat and beyond: the diverse biology of PPARgamma. Annu. Rev. Biochem. 77, 289–312 (2008).

    CAS  PubMed  Google Scholar 

  25. Gajewski, T.F., Schreiber, H. & Fu, Y.-X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol. (18 September 2013) doi:10.1038/ni.2703.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Savage, P.A., Malchow, S. & Leventhal, D.S. Basic principles of tumor-associated regulatory T cell biology. Trends Immunol. 34, 33–40 (2013).

    CAS  PubMed  Google Scholar 

  27. Gobert, M. et al. Regulatory T cells recruited through CCL22/CCR4 are selectively activated in lymphoid infiltrates surrounding primary breast tumors and lead to an adverse clinical outcome. Cancer Res. 69, 2000–2009 (2009).

    CAS  PubMed  Google Scholar 

  28. Gao, X. et al. TIM-3 expression characterizes regulatory T cells in tumor tissues and is associated with lung cancer progression. PLoS ONE 7, e30676 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Park, H.J. et al. Tumor-infiltrating regulatory T cells delineated by upregulation of PD-1 and inhibitory receptors. Cell. Immunol. 278, 76–83 (2012).

    CAS  PubMed  Google Scholar 

  30. Strauss, L. et al. A unique subset of CD4+CD25highFoxp3+ T cells secreting interleukin-10 and transforming growth factor-beta1 mediates suppression in the tumor microenvironment. Clin. Cancer Res. 13, 4345–4354 (2007).

    CAS  PubMed  Google Scholar 

  31. Curiel, T.J. et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat. Med. 10, 942–949 (2004).This study demostrated that T reg cells have an immunopathological role in human cancer by showing that they accumulate in ovarian tumors, recruited by CCL22, and that they suppress antitumoral T cell responses.

    CAS  PubMed  Google Scholar 

  32. Tan, M.C. et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer. J. Immunol. 182, 1746–1755 (2009).

    CAS  PubMed  Google Scholar 

  33. Quezada, S.A. et al. Limited tumor infiltration by activated T effector cells restricts the therapeutic activity of regulatory T cell depletion against established melanoma. J. Exp. Med. 205, 2125–2138 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuczma, M. et al. Intratumoral convergence of the TCR repertoires of effector and Foxp3+ CD4+ T cells. PLoS ONE 5, e13623 (2010).

    PubMed  PubMed Central  Google Scholar 

  35. Liu, V.C. et al. Tumor evasion of the immune system by converting CD4+. J. Immunol. 178, 2883–2892 (2007).

    CAS  PubMed  Google Scholar 

  36. Ding, Y., Xu, J. & Bromberg, J.S. Regulatory T cell migration during an immune response. Trends Immunol. 33, 174–180 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Grindebacke, H. et al. Dynamic development of homing receptor expression and memory cell differentiation of infant CD4+CD25high regulatory T cells. J. Immunol. 183, 4360–4370 (2009).

    CAS  PubMed  Google Scholar 

  38. Campbell, D.J. & Koch, M.A. Phenotypical and functional specialization of FOXP3+ regulatory T cells. Nat. Rev. Immunol. 11, 119–130 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhang, N. et al. Regulatory T cells sequentially migrate from inflamed tissues to draining lymph nodes to suppress the alloimmune response. Immunity 30, 458–469 (2009).This report described the migration pattern of T reg cells in a model of islet transplantation and proposed that T reg cells, to efficiently control an alloimmune response, need to be educated first in the target tissue before entering the draining lymph node.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rosenblum, M.D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Malchow, S. et al. Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339, 1219–1224 (2013).This work identified an endogenous population of thymus-derived T reg cells that infiltrates mouse prostate tumors and is specific for a normal prostate antigen, and demonstrated that Aire-mediated expression of peripheral-tissue antigens can drive the generation of tissue-specific T reg cell subsets.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Bilate, A.M. & Lafaille, J.J. Induced CD4+Foxp3+ regulatory T cells in immune tolerance. Annu. Rev. Immunol. 30, 733–758 (2012).

    CAS  PubMed  Google Scholar 

  43. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Haribhai, D. et al. A central role for induced regulatory T cells in tolerance induction in experimental colitis. J. Immunol. 182, 3461–3468 (2009).

    CAS  PubMed  Google Scholar 

  45. Atarashi, K. et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331, 337–341 (2011).This study demonstrated that a cocktail of Clostridia species, a component of the mammalian colonic microbiota, promote anti-inflammatory immune responses by expanding and activating T reg cells in the colonic lamina propria.

    CAS  PubMed  Google Scholar 

  46. Thornton, A.M. et al. Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J. Immunol. 184, 3433–3441 (2010).

    CAS  PubMed  Google Scholar 

  47. Zheng, Y. et al. Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463, 808–812 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Josefowicz, S.Z. et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature 482, 395–399 (2012).This paper showed that mice deficient in peripheral T reg cells spontaneously develop pronounced T H 2 cell–type pathologies at mucosal sites and have altered gut microbial communities, demostrating the functional specialization of peripheral T reg cells and confirming that thymus-derived T reg cells are the major controllers of systemic and tissue-specific autoimmunity.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-beta and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Soroosh, P. et al. Lung-resident tissue macrophages generate Foxp3+ regulatory T cells and promote airway tolerance. J. Exp. Med. 210, 775–788 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Liu, Y., Teige, I., Birnir, B. & Issazadeh-Navikas, S. Neuron-mediated generation of regulatory T cells from encephalitogenic T cells suppresses EAE. Nat. Med. 12, 518–525 (2006).

    CAS  PubMed  Google Scholar 

  52. Zhou, G. & Levitsky, H.I. Natural regulatory T cells and de novo–induced regulatory T cells contribute independently to tumor-specific tolerance. J. Immunol. 178, 2155–2162 (2007).

    CAS  PubMed  Google Scholar 

  53. Yona, S. et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38, 79–91 (2013).

    CAS  PubMed  Google Scholar 

  54. Deiuliis, J. et al. Visceral adipose inflammation in obesity is associated with critical alterations in T regulatory cell numbers. PLoS ONE 6, e16376 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ilan, Y. et al. Induction of regulatory T cells decreases adipose inflammation and alleviates insulin resistance in ob/ob mice. Proc. Natl. Acad. Sci. USA 107, 9765–9770 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bates, G.J. et al. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J. Clin. Oncol. 24, 5373–5380 (2006).

    PubMed  Google Scholar 

  57. Perrone, G. et al. Intratumoural FOXP3-positive regulatory T cells are associated with adverse prognosis in radically resected gastric cancer. Eur. J. Cancer 44, 1875–1882 (2008).

    CAS  PubMed  Google Scholar 

  58. Colotta, F. et al. Cancer-related inflammation, the seventh hallmark of cancer: links to genetic instability. Carcinogenesis 30, 1073–1081 (2009).

    CAS  PubMed  Google Scholar 

  59. Grivennikov, S.I., Greten, F.R. & Karin, M. Immunity, inflammation, and cancer. Cell 140, 883–899 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. deLeeuw, R.J., Kost, S.E., Kakal, J.A. & Nelson, B.H. The prognostic value of FoxP3+ tumor-infiltrating lymphocytes in cancer: a critical review of the literature. Clin. Cancer Res. 18, 3022–3029 (2012).

    CAS  PubMed  Google Scholar 

  61. Ladoire, S., Martin, F. & Ghiringhelli, F. Prognostic role of FOXP3+ regulatory T cells infiltrating human carcinomas: the paradox of colorectal cancer. Cancer Immunol. Immunother. 60, 909–918 (2011).

    CAS  PubMed  Google Scholar 

  62. Eller, K. et al. Potential role of regulatory T cells in reversing obesity-linked insulin resistance and diabetic nephropathy. Diabetes 60, 2954–2962 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    CAS  PubMed  Google Scholar 

  64. Kleinschnitz, C. et al. Regulatory T cells are strong promoters of acute ischemic stroke in mice by inducing dysfunction of the cerebral microvasculature. Blood 121, 679–691 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ait-Oufella, H. et al. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med. 12, 178–180 (2006).

    CAS  PubMed  Google Scholar 

  66. Klingenberg, R. et al. Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. J. Clin. Invest. 123, 1323–1334 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Tang, T.T. et al. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res. Cardiol. 107, 232 (2012).

    PubMed  Google Scholar 

  68. Katz, S.C. et al. Obstructive jaundice expands intrahepatic regulatory T cells, which impair liver T lymphocyte function but modulate liver cholestasis and fibrosis. J. Immunol. 187, 1150–1156 (2011).

    CAS  PubMed  Google Scholar 

  69. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    CAS  PubMed  Google Scholar 

  70. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    CAS  PubMed  Google Scholar 

  71. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and T(reg) cells. Nature 475, 226–230 (2011).

    CAS  PubMed  Google Scholar 

  72. Tan, W. et al. Tumour-infiltrating regulatory T cells stimulate mammary cancer metastasis through RANKL-RANK signalling. Nature 470, 548–553 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sanchez, A.M., Zhu, J., Huang, X. & Yang, Y. The development and function of memory regulatory T cells after acute viral infections. J. Immunol. 189, 2805–2814 (2012).

    CAS  PubMed  Google Scholar 

  74. Brincks, E.L. et al. Antigen-specific memory regulatory CD4+Foxp3+ T cells control memory responses to influenza virus infection. J. Immunol. 190, 3438–3446 (2013).

    CAS  PubMed  Google Scholar 

  75. Clark, R.A. & Kupper, T.S. IL-15 and dermal fibroblasts induce proliferation of natural regulatory T cells isolated from human skin. Blood 109, 194–202 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Seneschal, J. et al. Human epidermal Langerhans cells maintain immune homeostasis in skin by activating skin resident regulatory T cells. Immunity 36, 873–884 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Vukmanovic-Stejic, M. et al. The kinetics of CD4+Foxp3+ T cell accumulation during a human cutaneous antigen-specific memory response in vivo. J. Clin. Invest. 118, 3639–3650 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Rowe, J.H., Ertelt, J.M., Xin, L. & Way, S.S. Pregnancy imprints regulatory memory that sustains anergy to fetal antigen. Nature 490, 102–106 (2012).This study showed that pregnancy selectively stimulates the accumulation of maternal T reg cells with fetal specificity, which, after delivery, persist at elevated levels, maintain tolerance to preexisting fetal antigen and rapidly reaccumulate during subsequent pregnancy, demonstrating the importance of T reg cells for sustaining protective regulatory memory to fetal antigen.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Erlebacher, A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat. Rev. Immunol. 13, 23–33 (2013).

    CAS  PubMed  Google Scholar 

  80. Kallikourdis, M., Andersen, K.G., Welch, K.A. & Betz, A.G. Alloantigen-enhanced accumulation of CCR5+ 'effector' regulatory T cells in the gravid uterus. Proc. Natl. Acad. Sci. USA 104, 594–599 (2007).

    CAS  PubMed  Google Scholar 

  81. Perez Leiros, C. & Ramhorst, R. Tolerance induction at the early maternal-placental interface through selective cell recruitment and targeting by immune polypeptides. Am. J. Reprod. Immunol. 69, 359–368 (2013).

    PubMed  Google Scholar 

Download references

Acknowledgements

Work on tissue Treg cells in our laboratory is supported by US National Institutes of Health grants R01DK092541 and R37AI051530 (to C.B. and D.M.). D.B. was supported by a Kaneb Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christophe Benoist or Diane Mathis.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burzyn, D., Benoist, C. & Mathis, D. Regulatory T cells in nonlymphoid tissues. Nat Immunol 14, 1007–1013 (2013). https://doi.org/10.1038/ni.2683

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2683

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing