Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells

An Erratum to this article was published on 19 March 2013

This article has been updated

Abstract

The development and function of natural killer (NK) cells is regulated by the interaction of inhibitory receptors of the Ly49 family with distinct peptide-laden major histocompatibility complex (MHC) class I molecules, although whether the Ly49 family is able bind to other MHC class I–like molecules is unclear. Here we found that the prototypic inhibitory receptor Ly49A bound the highly conserved nonclassical MHC class I molecule H2-M3 with an affinity similar to its affinity for H-2Dd. The specific recognition of H2-M3 by Ly49A regulated the 'licensing' of NK cells and mediated 'missing-self' recognition of H2-M3-deficient bone marrow. Host peptide–H2-M3 was required for optimal NK cell activity against experimental metastases and carcinogenesis. Thus, nonclassical MHC class I molecules can act as cognate ligands for Ly49 molecules. Our results provide insight into the various mechanisms that lead to NK cell tolerance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: H2-M3 is recognized by C57BL/6 Ly49A.
Figure 2: Ly49A binds with similar affinity to H2-M3 and to H-2Dd.
Figure 3: H2-M3 is not required for NK cell homeostasis.
Figure 4: H2-M3 is required for the control of B16-F10 metastases and MCA-induced fibrosarcoma by NK cells.
Figure 5: Ly49A+ NK cells from H2-M3-deficient mice are not fully licensed.
Figure 6: Rejection of H2-M3-deficient bone marrow demonstrates missing-self recognition.

Similar content being viewed by others

Change history

  • 19 November 2012

    In the version of this article initially published, two designations for major histocompatibility complex molecules in the second subsection of Results are incorrect. The correct text should read "The affinity of AGPARAAAL-loaded H-2Dd for Ly49A (2.05 ± 0.07 μM; Fig. 2c) was similar to published values36. In contrast, we observed no interaction between Ly49A and SIINFEKL-loaded H-2Kb (Fig. 2d)...." The error has been corrected for HTML and PDF versions of this article.

References

  1. Chan, C.J. et al. Can NK cells be a therapeutic target in human cancer? Eur. J. Immunol. 38, 2964–2968 (2008).

    CAS  PubMed  Google Scholar 

  2. Ljunggren, H.G. & Malmberg, K.J. Prospects for the use of NK cells in immunotherapy of human cancer. Nat. Rev. Immunol. 7, 329–339 (2007).

    CAS  PubMed  Google Scholar 

  3. Andoniou, C.E. et al. Natural killer cells in viral infection: more than just killers. Immunol. Rev. 214, 239–250 (2006).

    CAS  PubMed  Google Scholar 

  4. Karlhofer, F.M. et al. MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358, 66–70 (1992).

    CAS  PubMed  Google Scholar 

  5. Yu, Y.Y. et al. The role of Ly49A and 5E6(Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T cell blasts. Immunity 4, 67–76 (1996).

    CAS  PubMed  Google Scholar 

  6. Kärre, K. et al. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319, 675–678 (1986).

    PubMed  Google Scholar 

  7. Kärre, K. How to recognize a foreign submarine. Immunol. Rev. 155, 5–9 (1997).

    PubMed  Google Scholar 

  8. Natarajan, K. et al. Interaction of the NK cell inhibitory receptor Ly49A with H-2Dd: identification of a site distinct from the TCR site. Immunity 11, 591–601 (1999).

    CAS  PubMed  Google Scholar 

  9. Held, W. et al. Major histocompatibility complex class I-dependent skewing of the natural killer cell Ly49 receptor repertoire. Eur. J. Immunol. 26, 2286–2292 (1996).

    CAS  PubMed  Google Scholar 

  10. Valiante, N.M. et al. Functionally and structurally distinct NK cell receptor repertoires in the peripheral blood of two human donors. Immunity 7, 739–751 (1997).

    CAS  PubMed  Google Scholar 

  11. Hanke, T. et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity 11, 67–77 (1999).

    CAS  PubMed  Google Scholar 

  12. Fernandez, N.C. et al. A subset of natural killer cells achieves self-tolerance without expressing inhibitory receptors specific for self-MHC molecules. Blood 105, 4416–4423 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Höglund, P. et al. Recognition of β2-microglobulin-negative (β2m) T-cell blasts by natural killer cells from normal but not from β2m mice: nonresponsiveness controlled by β2m bone marrow in chimeric mice. Proc. Natl. Acad. Sci. USA 88, 10332–10336 (1991).

    PubMed  Google Scholar 

  14. Raulet, D.H. & Vance, R.E. Self-tolerance of natural killer cells. Nat. Rev. Immunol. 6, 520–531 (2006).

    CAS  PubMed  Google Scholar 

  15. Kim, S. et al. Licensing of natural killer cells by host major histocompatibility complex class I molecules. Nature 436, 709–713 (2005).

    CAS  PubMed  Google Scholar 

  16. Kumar, V. & McNerney, M.E. A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat. Rev. Immunol. 5, 363–374 (2005).

    CAS  PubMed  Google Scholar 

  17. Vance, R.E. et al. Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1b. J. Exp. Med. 188, 1841–1848 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanke, T. et al. Identification of an immunodominant cytotoxic T-lymphocyte recognition site in glycoprotein B of herpes simplex virus by using recombinant adenovirus vectors and synthetic peptides. J. Virol. 65, 1177–1186 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Borrego, F. et al. Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis. J. Exp. Med. 187, 813–818 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Braud, V.M. et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 391, 795–799 (1998).

    CAS  PubMed  Google Scholar 

  21. Ohtsuka, M. et al. Major histocompatibility complex (MHC) class Ib gene duplications, organization and expression patterns in mouse strain C57BL/6. BMC Genomics 9, 178 (2008).

    PubMed  PubMed Central  Google Scholar 

  22. Chiu, N.M. et al. The majority of H2–M3 is retained intracellularly in a peptide-receptive state and traffics to the cell surface in the presence of N-formylated peptides. J. Exp. Med. 190, 423–434 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Loveland, B. et al. Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochondrially encoded protein. Cell 60, 971–980 (1990).

    CAS  PubMed  Google Scholar 

  24. Gulden, P.H. et al. A Listeria monocytogenes pentapeptide is presented to cytolytic T lymphocytes by the H2–M3 MHC class Ib molecule. Immunity 5, 73–79 (1996).

    CAS  PubMed  Google Scholar 

  25. Lenz, L.L. et al. Identification of an H2–M3-restricted Listeria epitope: implications for antigen presentation by M3. Immunity 5, 63–72 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, C.R. et al. H-2M3 encodes the MHC class I molecule presenting the maternally transmitted antigen of the mouse. Cell 66, 335–345 (1991).

    CAS  PubMed  Google Scholar 

  27. Colmone, A. & Wang, C.-R. H2–M3-restricted T cell response to infection. Microbes Infect. 8, 2277–2283 (2006).

    CAS  PubMed  Google Scholar 

  28. Xu, H. et al. Impaired response to Listeria in H2–M3-deficient mice reveals a nonredundant role of MHC class Ib-specific T cells in host defense. J. Exp. Med. 203, 449–459 (2006).

    PubMed  PubMed Central  Google Scholar 

  29. Deng, L. et al. Molecular architecture of the major histocompatibility complex class I-binding site of Ly49 natural killer cell receptors. J. Biol. Chem. 283, 16840–16849 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brennan, J. et al. Recognition of class I major histocompatibility complex molecules by Ly-49: specificities and domain interactions. J. Exp. Med. 183, 1553–1559 (1996).

    CAS  PubMed  Google Scholar 

  31. Brodin, P. et al. The strength of inhibitory input during education quantitatively tunes the functional responsiveness of individual natural killer cells. Blood 113, 2434–2441 (2009).

    CAS  PubMed  Google Scholar 

  32. Johansson, S. et al. Probing natural killer cell education by Ly49 receptor expression analysis and computational modelling in single MHC class I mice. PLoS ONE 4, e6046 (2009).

    PubMed  PubMed Central  Google Scholar 

  33. Michaëlsson, J. et al. Visualization of inhibitory Ly49 receptor specificity with soluble major histocompatibility complex class I tetramers. Eur. J. Immunol. 30, 300–307 (2000).

    PubMed  Google Scholar 

  34. Scarpellino, L. et al. Interactions of Ly49 family receptors with MHC class I ligands in trans and cis. J. Immunol. 178, 1277–1284 (2007).

    CAS  PubMed  Google Scholar 

  35. Burrows, S.R. et al. Peptide-MHC class I tetrameric complexes display exquisite ligand specificity. J. Immunol. 165, 6229–6234 (2000).

    CAS  PubMed  Google Scholar 

  36. Wang, J. et al. Binding of the natural killer cell inhibitory receptor Ly49A to its major histocompatibility complex class I ligand. Crucial contacts include both H-2Dd AND β2-microglobulin. J. Biol. Chem. 277, 1433–1442 (2002).

    CAS  PubMed  Google Scholar 

  37. Zafirova, B. et al. Altered NK cell development and enhanced NK cell-mediated resistance to mouse cytomegalovirus in NKG2D-deficient mice. Immunity 31, 270–282 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Hayakawa, Y. & Smyth, M.J. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J. Immunol. 176, 1517–1524 (2006).

    CAS  PubMed  Google Scholar 

  39. Guerra, N. et al. NKG2D-deficient mice are defective in tumor surveillance in models of spontaneous malignancy. Immunity 28, 571–580 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Joncker, N.T. et al. Mature natural killer cells reset their responsiveness when exposed to an altered MHC environment. J. Exp. Med. 207, 2065–2072 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sun, K. et al. Mouse NK cell-mediated rejection of bone marrow allografts exhibits patterns consistent with Ly49 subset licensing. Blood 119, 1590–1598 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Oberg, L. et al. Loss or mismatch of MHC class I is sufficient to trigger NK cell-mediated rejection of resting lymphocytes in vivo: role of KARAP/DAP12-dependent and -independent pathways. Eur. J. Immunol. 34, 1646–1653 (2004).

    PubMed  Google Scholar 

  43. Chan, P.Y. & Takei, F. Expression of a T cell receptor-like molecule on normal and malignant murine T cells detected by rat monoclonal antibodies to nonclonotypic determinants. J. Immunol. 136, 1346–1353 (1986).

    CAS  PubMed  Google Scholar 

  44. Nagasawa, R. et al. Identification of a novel T cell surface disulfide-bonded dimer distinct from the α/β antigen receptor. J. Immunol. 138, 815–824 (1987).

    CAS  PubMed  Google Scholar 

  45. Wong, S. et al. Ly-49 multigene family. New members of a superfamily of type II membrane proteins with lectin-like domains. J. Immunol. 147, 1417–1423 (1991).

    CAS  PubMed  Google Scholar 

  46. Jonsson, A.H. et al. Effects of MHC class I alleles on licensing of Ly49A+ NK cells. J. Immunol. 184, 3424–3432 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Brodin, P. et al. Skewing of the NK cell repertoire by MHC class I via quantitatively controlled enrichment and contraction of specific Ly49 subsets. J. Immunol. 188, 2218–2226 (2012).

    CAS  PubMed  Google Scholar 

  48. Elliott, J.M. & Yokoyama, W.M. Unifying concepts of MHC-dependent natural killer cell education. Trends Immunol. 32, 364–372 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Hoare, H.L. et al. Structural basis for a major histocompatibility complex class Ib-restricted T cell response. Nat. Immunol. 7, 256–264 (2006).

    CAS  PubMed  Google Scholar 

  50. Pellicci, D.G. et al. Differential recognition of CD1d-α-galactosyl ceramide by the Vβ8.2 and Vβ7 semi-invariant NKT T cell receptors. Immunity 31, 47–59 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank C. Paget for critical analysis of the manuscript; E. Hawkins, Q. Mundrea, B. Venville, N. McLaughlin and J. Sharkey for technical assistance; and B. Murphy (UC Davis Cancer Center) for the YE1/32 antibody to Ly49A. Supported by the National Health and Medical Research Council of Australia (D.M.A., L.C.S., R.B., M.J.S., A.G.B. and J.R.), Cancer Australia, the Cure Cancer Australia Foundation, the US National Institutes of Health (AI040310 to C.-R.W.) and the Howard Hughes Medical Institute (W.M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

D.M.A. conceived of, designed and did the experiments with assistance from L.C.S., N.B., C.J.C., R.B., C.L.C., H.H., J.L., S.V.W., J.P.-L. and M.J.S.; C.-R.W., A.A.S., W.M.Y., J.R., A.G.B. and M.J.S. provided reagents and critical input to the analysis of results; and D.M.A., L.C.S., J.R., A.G.B. and M.J.S. wrote the manuscript.

Corresponding authors

Correspondence to Daniel M Andrews or Mark J Smyth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 (PDF 165 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, D., Sullivan, L., Baschuk, N. et al. Recognition of the nonclassical MHC class I molecule H2-M3 by the receptor Ly49A regulates the licensing and activation of NK cells. Nat Immunol 13, 1171–1177 (2012). https://doi.org/10.1038/ni.2468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing