Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Formation of lower continental crust by relamination of buoyant arc lavas and plutons

Abstract

The formation of the Earth's continents is enigmatic. Volcanic arc magmas generated above subduction zones have geochemical compositions that are similar to continental crust, implying that arc magmatic processes played a central role in generating continental crust. Yet the deep crust within volcanic arcs has a very different composition from crust at similar depths beneath the continents. It is therefore unclear how arc crust is transformed into continental crust. The densest parts of arc lower crust may delaminate and become recycled into the underlying mantle. Here we show, however, that even after delamination, arc lower crust still has significantly different trace element contents from continental lower crust. We suggest that it is not delamination that determines the composition of continental crust, but relamination. In our conceptual model, buoyant magmatic rocks generated at arcs are subducted. Then, upon heating at depth, they ascend and are relaminated at the base of the overlying crust. A review of the average compositions of buoyant magmatic rocks — lavas and plutons — sampled from the Aleutians, Izu–Bonin–Marianas, Kohistan and Talkeetna arcs reveals that they fall within the range of estimated major and trace elements in lower continental crust. Relamination may thus provide an efficient process for generating lower continental crust.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison of trace elements in arc versus continental lower crust.
Figure 2: Incompatible element concentration in LCC and in Talkeetna and Kohistan arc lower crust.
Figure 3: Incompatible trace-element concentration in Talkeetna and Kohistan arc crust as a function of depth.
Figure 4: Incompatible element concentration in arc compositions that are buoyant compared with mantle peridotite.
Figure 5: Compositions of 1:1 mixtures of buoyant lava and plutonic compositions, compared with BCC and LCC.

Similar content being viewed by others

References

  1. Kelemen, P. B. Genesis of high Mg# andesites and the continental crust. Contrib. Mineral. Petrol. 120, 1–19 (1995).

    Google Scholar 

  2. Rudnick, R. L. Making continental crust. Nature 378, 571–577 (1995).

    Google Scholar 

  3. Taylor, S. R. The origin and growth of continents. Tectonophysics. 4, 17–34 (1967).

    Google Scholar 

  4. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution (Blackwell, 1985).

    Google Scholar 

  5. Taylor, S. R. & McLennan, S. M. The geochemical evolution of the continental crust. Rev. Geophys. 33, 241–265 (1995).

    Google Scholar 

  6. Kelemen, P. B., Hanghøj, K. & Greene, A. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 593–659 (Elsevier-Pergamon, 2003).

    Google Scholar 

  7. Kelemen, P. B., Hanghøj, K. & Greene, A. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 746–805 (Elsevier-Pergamon, 2014).

    Google Scholar 

  8. Holbrook, W. S., Mooney, W. D. & Christensen, N. I. in Continental Lower Crust (eds Fountain, D. M., Arculus, R. & Kay, R. W.) 1–42 (Elsevier, 1992).

    Google Scholar 

  9. Laske, G., Masters, G. & Reif, C. CRUST2.0: A New Global Crustal Model at 2 × 2 Degrees http://igppweb.ucsd.edu/gabi/crust2.html (2001).

    Google Scholar 

  10. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust; a global view. J. Geophys. Res. B 100, 9761–9788 (1995).

    Google Scholar 

  11. Rudnick, R. L. & Fountain, D. M. Nature and composition of the continental crust: a lower crustal perspective. Rev. Geophys. 33, 267–309 (1995).

    Google Scholar 

  12. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Continental lower crust. Annu. Rev. Earth Planet. Sci. 43, 167–205 (2015).

    Google Scholar 

  13. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry Vol. 3 (ed. Rudnick, R. L.) 1–64 (Elsevier-Pergamon, 2003).

    Google Scholar 

  14. Rudnick, R. L. & Gao, S. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 1–51 (Elsevier-Pergamon, 2014).

    Google Scholar 

  15. Rudnick, R. L. & Presper, T. in Granulites and Crustal Evolution (eds Vielzeuf, D. & Vidal, P.) 523–550 (Kluwer, 1990).

    Google Scholar 

  16. Huang, Y., Chunakov, V., Mantovani, F., Rudnick, R. L. & McDonough, W. F. A reference Earth model for the heat-producing elements and associated geoneutrino flux. G-cubed 14, 2003–2029 (2013).

    Google Scholar 

  17. Behn, M. D. & Kelemen, P. B. Relationship between seismic P-wave velocity and the composition of anhydrous igneous and meta-igneous rocks. Geochem. Geophys. Geosyst. 4, 1041 (2003).

    Google Scholar 

  18. Hacker, B. R., Kelemen, P. B. & Behn, M. D. Differentiation of the continental crust by relamination. Earth Planet. Sci. Lett. 307, 501–516 (2011).

    Google Scholar 

  19. Kelemen, P. B., Shimizu, N. & Dunn, T. Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111–134 (1993).

    Google Scholar 

  20. Hacker, B. R. H2O subduction beyond arcs. G-cubed 9, Q03001 (2008).

    Google Scholar 

  21. Jagoutz, O. & Schmidt, M. W. The formation and bulk composition of modern juvenile continental crust: the Kohistan arc. Chem. Geol. 298–299, 79–96 (2012).

    Google Scholar 

  22. DeBari, S. M. & Sleep, N. H. High-Mg, low-Al bulk composition of the Talkeetna island arc, Alaska: implications for primary magmas and the nature of arc crust. Geol. Soc. Am. Bull. 103, 37–47 (1991).

    Google Scholar 

  23. Greene, A., DeBari, S. M., Kelemen, P. B., Blusztajn, J. & Clift, P. D. A detailed geochemical study of island arc crust: the Talkeetna arc section, south-central Alaska. J. Petrol. 47, 1051–1093 (2006).

    Google Scholar 

  24. Jagoutz, O. & Kelemen, P. B. Role of arc processes in the formation of continental crust. Annu. Rev. Earth Planet. Sci. 43, 363–404 (2015).

    Google Scholar 

  25. Gill, J. B. Orogenic Andesites and Plate Tectonics (Springer, 1981).

    Google Scholar 

  26. Grove, T. L. et al. Fractional crystallization and mantle-melting controls on calc-alkaline differentiation trends. Contrib. Mineral. Petrol. 145, 515–533 (2003).

    Google Scholar 

  27. Blatter, D. L., Sisson, T. W. & Hankins, W. B. Crystallization of oxidized, moderately hydrous arc basalt at mid to lower crustal pressures: implications for andesite genesis. Contrib. Mineral. Petrol. 166, 861–886 (2013).

    Google Scholar 

  28. Yogodzinski, G. M., Volynets, O. N., Koloskov, A. V., Seliverstov, N. I. & Matvenkov, V. V. Magnesian andesites and the subduction component in a strongly calc-alkaline series at Piip Volcano, Far Western Aleutians. J. Petrol. 35, 163–204 (1994).

    Google Scholar 

  29. Müntener, O., Kelemen, P. B. & Grove, T. L. The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites: an experimental study. Contrib. Mineral. Petrol. 141, 643–658 (2001).

    Google Scholar 

  30. Anderson, A. T. Magma mixing: petrological processes and volcanological tool. J. Volc. Geotherm. Res. 1, 3–33 (1976).

    Google Scholar 

  31. Sisson, T. W., Grove, T. L. & Coleman, D. S. Hornblende gabbro sill complex at Onion Valley, California, and a mixing origin for the Sierra Nevada batholith. Contrib. Mineral. Petrol. 126, 81–108 (1996).

    Google Scholar 

  32. Shen, B., Jacobsen, B., Lee, C.-T., Yin, Q.-Z. & Morton, D. The Mg isotopic systematics of granitoids in continental arcs and implications for the role of chemical weathering in crust formation. Proc. Natl Acad. Sci. USA 106, 20653 (2009).

    Google Scholar 

  33. Albarede, F. & Michard, A. Transfer of continental Mg, S, O, and U to the mantle through hydrothermal alteration of the oceanic crust. Chem. Geol. 57, 1–15 (1986).

    Google Scholar 

  34. Rosing, M. T., Bird, D. K., Sleep, N. H., Glassley, W. & Albarede, F. The rise of continents: an essay on the geologic consequences of photosynthesis. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 99–113 (2006).

    Google Scholar 

  35. Jagoutz, O. Were ancient granitoid compositions influenced by contemporaneous atmospheric and hydrosphere oxidation states? Terra Nova 25, 95–101 (2013).

    Google Scholar 

  36. Weaver, B. L. & Tarney, J. Empirical approach to estimating the composition of the continental crust. Nature 310, 575–577 (1984).

    Google Scholar 

  37. Cai, Y., Rioux, M. E., Kelemen, P. B., Goldstein, S. L. & Bolge, L. Distinctly different parental magmas for calc-alkaline plutons and tholeiitic lavas in the central and eastern Aleutian arc. Earth Planet. Sci. Lett. 431, 119–126 (2015).

    Google Scholar 

  38. Kay, S. M., Kay, R. W. & Perfit, M. R. in Plutonism from Antarctica to Alaska. Geological Society of America Special Paper 241 (eds Kay, S. M. & Rapela, C. W.) 233–255 (Geol. Soc. Am., 1990).

    Google Scholar 

  39. Kelemen, P. B., Yogodzinski, G. M. & Scholl, D. W. in Inside the Subduction Factory. AGU Monograph 138 (ed. Eiler, J.) 293–311 (AGU, 2003).

    Google Scholar 

  40. Plank, T. Constraints from thorium/lanthanum on sediment recycling at subduction zones and the evolution of the continents. J. Petrol. 46, 921–944 (2005).

    Google Scholar 

  41. Tang, M., Rudnick, R. L., McDonough, W. F., Gaschnig, R. M. & Huang, Y. Europium anomalies constrain the mass of recycled lower continental crust. Geology 43, 703–706 (2015).

    Google Scholar 

  42. Behn, M. D., Kelemen, P. B., Hirth, G., Hacker, B. R. & Massonne, H. J. Diapirs as the source of the sediment signature in arc lavas. Nature Geosci. 4, 641–646 (2011).

    Google Scholar 

  43. Jull, M. & Kelemen, P. B. On the conditions for lower crustal convective instability. J. Geophys. Res. 106, 6423–6446 (2001).

    Google Scholar 

  44. Miller, N. C. & Behn, M. D. Timescales for the growth of sediment diapirs in subduction zones. Geophys. J. Int. 190, 1361–1377 (2012).

    Google Scholar 

  45. Ringwood, A. E. & Green, D. H. An experimental investigation of the gabbro-eclogite transformation and some geophysical implications. Tectonophysics. 3, 383–427 (1966).

    Google Scholar 

  46. Kay, R. W. & Kay, S. M. Creation and destruction of lower continental crust. Geol. Rundsch. 80, 259–278 (1991).

    Google Scholar 

  47. Herzberg, C. T., Fyfe, W. S. & Carr, M. J. Density constraints on the formation of the continental Moho and crust. Contrib. Mineral. Petrol. 84, 1–5 (1983).

    Google Scholar 

  48. Ringwood, A. E. The petrological evolution of island arc systems. J. Geol. Soc. Lond. 130, 183–204 (1974).

    Google Scholar 

  49. Currie, C. A., Beaumont, C. & Huismans, R. S. The fate of subducted sediments: A case for backarc intrusion and underplating. Geology 35, 1111–1114 (2007).

    Google Scholar 

  50. Whitney, D. L., Teyssier, C. & Rey, P. F. The consequences of crustal melting in continental subduction. Lithosphere 1, 323–327 (2009).

    Google Scholar 

  51. Behn, M. D. & Kelemen, P. B. Stability of arc lower crust: insights from the Talkeetna arc section, south central Alaska, and the seismic structure of modern arcs. J. Geophys. Res. 111, B11207 (2006).

    Google Scholar 

  52. Jagoutz, O. & Schmidt, M. W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet. Sci. Lett. 371–372, 177–190 (2013).

    Google Scholar 

  53. Ducea, M. N. & Saleeby, J. B. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: evidence from xenolith thermobarometry. J. Geophys. Res. 101, 8229–8244 (1996).

    Google Scholar 

  54. Wernicke, B. et al. Origin of high mountains in the continents: the southern Sierra Nevada. Science 271, 190–193 (1996).

    Google Scholar 

  55. Walsh, E. O. & Hacker, B. R. The fate of subducted continental margins: two-stage exhumation of the high-pressure to ultrahigh-pressure Western Gneiss complex, Norway. J. Metamorph. Geol. 22, 671–689 (2004).

    Google Scholar 

  56. Grove, M., Jacobson, C. E., Barth, A. P. & Vucic, A. Temporal and spatial trends of Late Cretaceous–early Tertiary underplating of Pelona and related schist beneath southern California and southwestern Arizona. Spec. Pap. Geol. Soc. Am. 374, 381–406 (2003).

    Google Scholar 

  57. Bassett, D. et al. Three-dimensional velocity structure of the northern Hikurangi margin, Raukumara, New Zealand: implications for the growth of continental crust by subduction erosion and tectonic underplating. G-cubed 11, Q10013 (2010).

    Google Scholar 

  58. Scherwath, M. et al. Fore-arc deformation and underplating at the northern Hikurangi margin, New Zealand. J. Geophys. Res. 115, B06408 (2010).

    Google Scholar 

  59. Enami, M., Mizukami, T. & Yokoyama, K. Metamorphic evolution of garnet-bearing ultramafic rocks from the Gongen area, Sanbagawa belt, Japan. J. Metamorphic Geol. 22, 1–15 (2004).

    Google Scholar 

  60. Warren, C. J., Beaumont, C. & Jamieson, R. A. Modelling tectonic styles and ultrahigh pressure (UHP) rock exhumation during the transition from oceanic subduction to continental collision. Earth Planet. Sci. Lett. 267, 129–145 (2008).

    Google Scholar 

  61. Sharp, Z. D., Essene, E. J. & Smyth, J. R. Ultra-high temperatures from oxygen isotope thermometry of a coesite-sanidine grospydite. Contrib. Mineral. Petrol. 112, 358–370 (1992).

    Google Scholar 

  62. Compagnoni, R. & Maffeo, B. Jadeite-bearing metagranites l.s. and related rocks in the Mount Mucrone area (Sesia-Lanzo Zone, western Italian Alps). Schweiz. Mineral. Petrogr. Mitt. 53, 355–377 (1973).

    Google Scholar 

  63. Clift, P. D. & Vannucchi, P. Controls on tectonic accretion versus erosion in subduction zones: Implications for the origin and recycling of the continental crust. Rev. Geophys. 42, 2003RG000127 (2004).

    Google Scholar 

  64. Scholl, D. W. & von Huene, R. in 4D Framework of Continental Crust. Geological Society of America Memoir 200 (eds Robert, J. et al.) 9–32 (Geol. Soc. Am., 2007).

    Google Scholar 

  65. Ustaszewski, K. et al. Crust–mantle boundaries in the Taiwan–Luzon arc-continent collision system determined from local earthquake tomography and 1D models: implications for the mode of subduction polarity reversal. Tectonophysics 578, 31–49 (2012).

    Google Scholar 

  66. Arai, R., Iwasaki, T., Sato, H., Abe, S. & Hirata, N. Collision and subduction structure of the Izu–Bonin arc, central Japan, revealed by refraction/wide-angle reflection analysis. Tectonophysics 475, 438–453 (2009).

    Google Scholar 

  67. Tetreault, J. L. & Buiter, S. J. H. Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones. J. Geophys. Res. 117, B08403 (2012).

    Google Scholar 

  68. Yamamoto, S., Nakajima, J., Hasegawa, A. & Maruyama, S. Izu–Bonin arc subduction under the Honshu island, Japan: evidence from geological and seismological aspect. Gondwana Res. 16, 572–580 (2009).

    Google Scholar 

  69. Yamamoto, S., Senshu, H., Rino, S., Omori, S. & Maruyama, S. Granite subduction: arc subduction, tectonic erosion and sediment subduction. Gondwana Res. 15, 443–453 (2009).

    Google Scholar 

  70. Plank, T. in Treatise on Geochemistry 2nd edn, Vol. 4 (ed. Rudnick, R. L.) 607–629 (Elsevier-Pergamon, 2014).

    Google Scholar 

  71. Peterson, B. T. & DePaolo, D. J. Mass and composition of the continental crust estimated using the CRUST2.0 model. AGU Fall Meeting Abstr. 1, 1161 (2007).

    Google Scholar 

  72. Holbrook, S. W., Lizarralde, D., McGeary, S., Bangs, N. & Diebold, J. Structure and composition of the Aleutian island arc and implications for continental crustal growth. Geology 27, 31–34 (1999).

    Google Scholar 

  73. Fliedner, M. & Klemperer, S. L. Structure of an island arc: wide-angle seismic studies in the eastern Aleutian Islands, Alaska. J. Geophys. Res. 104, 10667–610694 (1999).

    Google Scholar 

  74. Shillington, D. J., Van Avendonk, H. J. A., Holbrook, W. S., Kelemen, P. B. & Hornbach, M. J. Composition and structure of the central Aleutian island arc from arc-parallel wide-angle seismic data. Geochem. Geophys. Geosyst. 5, Q10006 (2004).

    Google Scholar 

  75. Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005).

    Google Scholar 

  76. Connolly, J. A. D. Multivariable phase diagrams: an algorithm based on generalized thermodynamics. Am. J. Sci. 290, 666–718 (1990).

    Google Scholar 

  77. Ringwood, A. E. Chemical evolution of the terrestrial planets. Geochim. Cosmochim. Acta 30, 41–104 (1966).

    Google Scholar 

  78. Barth, M. G., McDonough, W. F. & Rudnick, R. L. Tracking the budget of Nb and Ta in the continental crust. Chem. Geol. 165, 197–213 (2000).

    Google Scholar 

  79. Jordan, E. K. et al. Integrated Earth Data Applications. CentAm & IBM Geochem Database Version 1.02 (2012); http://dx.doi.org/10.1594/IEDA/100053

    Google Scholar 

  80. Hopkins, M. D., Harrison, T. M. & Manning, C. E. Constraints on Hadean geodynamics from mineral inclusions in >4 Ga zircons. Earth Planet. Sci. Lett. 298, 367–376 (2010).

    Google Scholar 

  81. Grimes, C. B. et al. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology 35, 643–646 (2007).

    Google Scholar 

  82. Clift, P. D., Vannucchi, P. & Phipps Morgan, J. Crustal redistribution, crust-mantle recycling and Phanerozoic evolution of the continental crust. Earth Sci. Rev. 97, 80–104 (2009).

    Google Scholar 

  83. Hacker, B. R. et al. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. J. Geophys. Res. 113, B03204 (2008).

    Google Scholar 

  84. Singer, B. S. et al. Along-strike trace element and isotopic variation in Aleutian Island arc basalt: subduction melts sediments and dehydrates serpentine. J. Geophys. Res. 112, B06206 (2007).

    Google Scholar 

  85. Yogodzinski, G. M. et al. The role of subducted basalt in the source of island arc magmas: evidence from seafloor lavas of the western Aleutians. J. Petrol. 56, 441–492 (2015).

    Google Scholar 

  86. Jagoutz, O. & Behn, M. D. Foundering of lower arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).

    Google Scholar 

Download references

Acknowledgements

We thank B. Hacker and O. Jagoutz for input and inspiration. This paper benefited from suggestions from C. Chauvel. The work was supported by NSF Research Grants EAR 13-16333 (M.D.B.), OCE 11-44759 (P.B.K.) and OCE 13-58091 (P.B.K.).

Author information

Authors and Affiliations

Authors

Contributions

P.B.K. formulated the hypothesis and compiled geochemical data. M.D.B. performed Perple_X calculations of density for metamorphic xenolith, massif and arc samples. P.B.K. wrote the text and prepared the figures.

Corresponding authors

Correspondence to Peter B. Kelemen or Mark D. Behn.

Supplementary information

Supplementary Information

Supplementary Information (PDF 8688 kb)

Supplementary Table 1

Estimated composition of Aleutian and Izu-Bonin-Mariana lower crust and bulk crust. (XLSX 151 kb)

Supplementary Table 2

Experimental data and mixing calculations, demonstrating products of three distinct paths to produce high Mg# andesites and dacites with compositions similar to continental crust, as illustrated in Supplementary Figure 4. (XLSX 47 kb)

Supplementary Table 3

Average compositions of continental, Aleutian, Izu-Bonin-Mariana, Talkeetna and Kohistan igneous rocks, and of the buoyant fraction with calculated densities < pyrolite (3,377 kg m-3) at 700°C, 3 GPa. (XLSX 122 kb)

Supplementary Table 4

All data used in this paper, including calculated densities. (XLSX 4944 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelemen, P., Behn, M. Formation of lower continental crust by relamination of buoyant arc lavas and plutons. Nature Geosci 9, 197–205 (2016). https://doi.org/10.1038/ngeo2662

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing