Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Intensification of landfalling typhoons over the northwest Pacific since the late 1970s

Abstract

Intensity changes in landfalling typhoons are of great concern to East and Southeast Asian countries1. Regional changes in typhoon intensity, however, are poorly known owing to inconsistencies among different data sets2,3,4,5,6,7,8. Here, we apply cluster analysis to bias-corrected data and show that, over the past 37 years, typhoons that strike East and Southeast Asia have intensified by 12–15%, with the proportion of storms of categories 4 and 5 having doubled or even tripled. In contrast, typhoons that stay over the open ocean have experienced only modest changes. These regional changes are consistent between operational data sets. To identify the physical mechanisms, we decompose intensity changes into contributions from intensification rate and intensification duration. We find that the increased intensity of landfalling typhoons is due to strengthened intensification rates, which in turn are tied to locally enhanced ocean surface warming on the rim of East and Southeast Asia. The projected ocean surface warming pattern under increasing greenhouse gas forcing suggests that typhoons striking eastern mainland China, Taiwan, Korea and Japan will intensify further. Given disproportionate damages by intense typhoons1, this represents a heightened threat to people and properties in the region.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temporal evolution of various typhoon intensity metrics.
Figure 2: Tracks and intensity evolution of typhoons in Cluster 1.
Figure 3: Tracks and intensity evolution of typhoons in Cluster 2.
Figure 4: Linear trends in potential intensity and SST.

Similar content being viewed by others

References

  1. Peduzzi, R. et al. Global trends in tropical cyclone risk. Nat. Clim. Change 2, 289–294 (2012).

    Article  Google Scholar 

  2. Wu, M.-C., Yeung, K.-H. & Chang, W.-L. Trends in western North Pacific tropical cyclone intensity. EOS Trans. Am. Geophys. Union 87, 537–538 (2006).

    Article  Google Scholar 

  3. Kamahori, H., Yamazaki, N., Mannoji, N. & Takahashi, K. Variability in intense tropical cyclone days in the western North Pacific. SOLA 2, 104–107 (2006).

    Article  Google Scholar 

  4. Chan, J. C. L. Decadal variations of intense typhoon occurrence in the western North Pacific. Proc. R. Soc. A 464, 249–272 (2008).

    Article  Google Scholar 

  5. Lander, M. A. A comparison of typhoon best-track data in the western North Pacific: irreconcilable differences. In 28th Conf. Hurricanes and Tropical Meteorology (American Meteorological Society, 2008). https://ams.confex.com/ams/28Hurricanes/techprogram/paper_137395.htm

  6. Song, J.-J., Wang, Y. & Wu, L. Trend discrepancies among three best track data sets of western North Pacific tropical cyclones. J. Geophys. Res. 115, D12128 (2010).

    Article  Google Scholar 

  7. Ren, F., Liang, J., Wu, G., Dong, W. & Yang, X. Reliability analysis of climate change of tropical cyclone activity over the western North Pacific. J. Clim. 24, 5887–5898 (2011).

    Article  Google Scholar 

  8. Kang, N.-Y. & Elsner, J. B. Consensus on climate trends in the western North Pacific tropical cyclones. J. Clim. 25, 7564–7573 (2012).

    Article  Google Scholar 

  9. Knutson, T. R. et al. Tropical cyclones and climate change. Nat. Geosci. 3, 157–163 (2010).

    Article  Google Scholar 

  10. Walsh, K. J. E. et al. Hurricanes and climate: the US CLIVAR Working Group on hurricanes. Bull. Am. Meteorol. Soc. 96, 997–1017 (2015).

    Article  Google Scholar 

  11. Emanuel, K. A. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436, 686–688 (2005).

    Article  Google Scholar 

  12. Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H.-R. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309, 1844–1846 (2005).

    Article  Google Scholar 

  13. Elsner, J. B., Kossin, J. P. & Jagger, T. H. The increasing intensity of the strongest tropical cyclones. Nature 455, 92–95 (2008).

    Article  Google Scholar 

  14. Holland, G. J. & Bruyère, C. L. Recent intense hurricane response to global climate change. Clim. Dynam. 42, 617–627 (2014).

    Article  Google Scholar 

  15. Chan, J. C. L. & Liu, K. S. Global warming and western North Pacific typhoon activity from an observational perspective. J. Clim. 17, 4590–4602 (2004).

    Article  Google Scholar 

  16. Mei, W., Xie, S.-P., Primeau, F., McWilliams, J. C. & Pasquero, C. Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Sci. Adv. 1, e1500014 (2015).

    Article  Google Scholar 

  17. Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P. & Ghil, M. Cluster analysis of typhoon tracks. Part I: general properties. J. Clim. 20, 3635–3653 (2007).

    Article  Google Scholar 

  18. Camargo, S. J., Robertson, A. W., Gaffney, S. J., Smyth, P. & Ghil, M. Cluster analysis of typhoon tracks. Part II: large-scale circulation and ENSO. J. Clim. 20, 3654–3676 (2007).

    Article  Google Scholar 

  19. Kossin, J. P., Emanuel, K. A. & Camargo, S. J. Past and projected changes in western North Pacific tropical cyclone exposure. J. Clim. http://dx.doi.org/10.1175/JCLI-D-16-0076.1 (2016).

  20. Kim, H.-M., Webster, P. J. & Curry, J. A. Modulation of North Pacific tropical cyclone activity by three phases of ENSO. J. Clim. 24, 1839–1849 (2011).

    Article  Google Scholar 

  21. Kossin, J. P., Olander, T. L. & Knapp, K. R. Trend analysis with a new global record of tropical cyclone intensity. J. Clim. 26, 9960–9976 (2013).

    Article  Google Scholar 

  22. Emanuel, K. A. The maximum intensity of hurricanes. J. Atmos. Sci. 45, 1143–1155 (1988).

    Article  Google Scholar 

  23. Holland, G. J. The maximum potential intensity of tropical cyclones. J. Atmos. Sci. 54, 2519–2541 (1997).

    Article  Google Scholar 

  24. Knaff, J. A., Sampson, C. R. & DeMaria, M. An operational statistical typhoon intensity prediction scheme for the western North Pacific. Weather Forecast. 20, 688–699 (2005).

    Article  Google Scholar 

  25. Emanuel, K. Thermodynamic control of hurricane intensity. Nature 401, 665–669 (1999).

    Article  Google Scholar 

  26. Lin, I.-I. et al. An ocean coupling potential intensity index for tropical cyclones. Geophys. Res. Lett. 40, 1878–1882 (2013).

    Article  Google Scholar 

  27. Ramsay, H. A. & Sobel, A. H. Effects of relative and absolute sea surface temperature on tropical cyclone potential intensity using a single-column model. J. Clim. 24, 183–193 (2011).

    Article  Google Scholar 

  28. Korty, R. L., Camargo, S. J. & Galewsky, J. Tropical cyclone genesis factors in simulations of the Last Glacial Maximum. J. Clim. 25, 4348–4365 (2012).

    Article  Google Scholar 

  29. Sriver, R. & Huber, M. Low frequency variability in globally integrated tropical cyclone power dissipation. Geophys. Res. Lett. 33, L11705 (2006).

    Article  Google Scholar 

  30. Vecchi, G. A. & Soden, B. J. Effect of remote sea surface temperature change on tropical cyclone potential intensity. Nature 450, 1066–1070 (2007).

    Article  Google Scholar 

  31. Murakami, H., Wang, B. & Kitoh, A. Future change of western North Pacific typhoons: projections by a 20-km-mesh global atmospheric model. J. Clim. 24, 1154–1169 (2011).

    Article  Google Scholar 

  32. Zhao, M. & Held, I. M. TC-permitting GCM simulations of hurricane frequency response to sea surface temperature anomalies projected for the late-twenty-first century. J. Clim. 25, 2995–3009 (2012).

    Article  Google Scholar 

  33. Wu, L.-X. et al. Enhanced warming over the global western boundary currents. Nat. Clim. Change 2, 161–166 (2012).

    Article  Google Scholar 

  34. Jones, G. S., Stott, P. A. & Christidis, N. Attribution of observed historial near-surface temperature variations to anthropogenic and natural causes using CMIP5 simulations. J. Geophys. Res. Atmos. 118, 4001–4024 (2013).

    Article  Google Scholar 

  35. Camargo, S. J. Global and regional aspects of tropical cyclone activity in the CMIP5 models. J. Clim. 26, 9880–9902 (2013).

    Article  Google Scholar 

  36. Chu, J.-H., Sampson, C. R., Levine, A. S. & Fukada, E. The Joint Typhoon Warning Center Tropical Cyclone Best-Tracks, 1945–2000 NRL/MR/7540-02-16 (Naval Research Laboratory, 2002).

    Google Scholar 

  37. National Typhoon Center, Japan Meteorological Agency Operational Tropical Cyclone Analysis by the Japan Meteorological Agency Report (World Meteorological Organization, 2011); https://www.wmo.int/pages/prog/www/tcp/documents/JMAoperationalTCanalysis.pdf

  38. Kishimoto, K. JMA Best Track Data Presentation (NOAA’s National Climatic Data Center, 2011); ftp://eclipse.ncdc.noaa.gov/san1/ibtracs/workshop/SecondWorkshop/12-Tuesday/April-12-1340-JMA%20best%20track-Kishimoto.pptx

  39. Lowry, M. R. Developing a Unified Superset in Quantifying Ambiguities Among Tropical Cyclone Best Track Data for the Western North Pacific Diploma thesis, Paper 1026, Florida State Univ. (2008).

  40. Koba, H., Hagiwara, T., Osano, S. & Akashi, S. Relationship between the CI-number and central pressure and maximum wind speed in typhoons. J. Meteor. Res. [in Japanese] 42, 59–67 (1990).

    Google Scholar 

  41. Kruk, M. C., Knapp, K. R. & Levinson, D. H. A technique for combining global tropical cyclone best track data. J. Atmos. Oceanic Technol. 27, 680–692 (2010).

    Article  Google Scholar 

  42. Dvorak, V. F. Tropical Cyclone Intensity Analysis Using Satellite Data, Tech. Rep. 11 45 (NOAA, 1984).

    Google Scholar 

  43. Emanuel, K. Climate and tropical cyclone activity: a new model downscaling approach. J. Clim. 19, 4797–4802 (2006).

    Article  Google Scholar 

  44. Emanuel, K., Sundararajan, R. & Williams, J. Hurricanes and global warming: results from downscaling IPCC AR4 simulations. Bull. Am. Meteorol. Soc. 89, 347–367 (2008).

    Article  Google Scholar 

  45. Wu, L.-G. & Zhao, H. Dynamically derived tropical cyclone intensity changes over the western North Pacific. J. Clim. 25, 89–98 (2012).

    Article  Google Scholar 

  46. Olander, T. L. & Velden, C. S. The Advanced Dvorak technique: continued development of an objective scheme to estimate tropical cyclone intensity using geostationary infrared satellite imagery. Weather Forecast. 22, 287–298 (2007).

    Article  Google Scholar 

  47. Velden, C. et al. The Dvorak tropical cyclone intensity estimation technique: a satellite-based method that has endured for over 30 years. Bull. Am. Meteorol. Soc. 87, 1195–1210 (2006).

    Article  Google Scholar 

  48. Kalnay, E. et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 77, 437–471 (1996).

    Article  Google Scholar 

  49. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 108(D14), 4407 (2003).

    Article  Google Scholar 

  50. Boyer, T. P. et al. World Ocean Database 2013, NOAA Atlas NESDIS 72 (ed. Levitus, S.; technical ed. Mishonov, A.) 209 (NOAA, 2013).

  51. Vecchi, G. A., Fueglistaler, S., Held, I. M., Knutson, T. R. & Zhao, M. Impacts of atmospheric temperature trends on tropical cyclone activity. J. Clim. 26, 3877–3891 (2013).

    Article  Google Scholar 

  52. Kossin, J. P. Validating atmospheric reanalysis data using tropical cyclones as thermometer. Bull. Am. Meteorol. Soc. 96, 1089–1096 (2015).

    Article  Google Scholar 

  53. Choi, Y., Ha, K.-J., Ho, C.-H. & Chung, C. E. Interdecadal change in typhoon genesis condition over the western North Pacific. Clim. Dyn. 45, 3243–3255 (2015).

    Article  Google Scholar 

  54. Gaffney, S. J., Robertson, A. W., Smyth, P., Camargo, S. J. & Ghil, M. Probabilistic clustering of extratropical cyclones using regression mixture models. Clim. Dyn. 29, 423–440 (2007).

    Article  Google Scholar 

  55. Camargo, S. J. & Sobel, A. H. Western North Pacific tropical cyclone intensity and ENSO. J. Clim. 18, 2996–3006 (2005).

    Article  Google Scholar 

  56. Kossin, J. P., Emanuel, K. A. & Vecchi, G. A. The poleward migration of the location of tropical cyclone maximum intensity. Nature 509, 349–352 (2014).

    Article  Google Scholar 

  57. Mei, W., Pasquero, C. & Primeau, F. The effect of translation speed upon the intensity of tropical cyclones over the tropical ocean. Geophys. Res. Lett. 39, L07801 (2012).

    Article  Google Scholar 

  58. Vincent, E. M., Emanuel, K. A., Lengaigne, M., Vialard, J. & Madec, G. Influence of upper ocean stratification interannual variability on tropical cyclones. J. Adv. Model. Earth Syst. 6, 680–699 (2014).

    Article  Google Scholar 

  59. Mei, W., Lien, C.-C., Lin, I.-I. & Xie, S.-P. Tropical cyclone-induced ocean response: a comparative study of the South China Sea and tropical northwest Pacific. J. Clim. 28, 5952–5968 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We are very grateful to K. Emanuel for providing synthetic tropical cyclones simulated using a coupled downscaling tropical cyclone model. We also acknowledge the World Climate Research Program’s Working Group on Coupled Modeling, which is responsible for CMIP, and we thank the climate modelling groups (listed in Supplementary Table 2) for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. This research was supported by NSF (1305719 and 1249145).

Author information

Authors and Affiliations

Authors

Contributions

W.M. conceived and designed the study, performed the analyses, and wrote the paper. S.-P.X. contributed to the development of the idea and the writing of the paper.

Corresponding author

Correspondence to Wei Mei.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2732 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mei, W., Xie, SP. Intensification of landfalling typhoons over the northwest Pacific since the late 1970s. Nature Geosci 9, 753–757 (2016). https://doi.org/10.1038/ngeo2792

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2792

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing