Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laurentide ice-sheet instability during the last deglaciation

Abstract

Changes in the amount of summer incoming solar radiation (insolation) reaching the Northern Hemisphere are the underlying pacemaker of glacial cycles1,2,3,4,5,6. However, not all rises in boreal summer insolation over the past 800,000 years resulted in deglaciation to present-day ice volumes1,2,3,6,7,8, suggesting that there may be a climatic threshold for the disappearance of land-based ice. Here we assess the surface mass balance stability9 of the Laurentide ice sheet—the largest glacial ice mass in the Northern Hemisphere—during the last deglaciation (24,000 to 9,000 years ago). We run a surface energy balance model10,11 with climate data from simulations with a fully coupled atmosphere–ocean general circulation model for key time slices during the last deglaciation. We find that the surface mass balance of the Laurentide ice sheet was positive throughout much of the deglaciation, and suggest that dynamic discharge was mainly responsible for mass loss during this time. Total surface mass balance became negative only in the early Holocene, indicating the transition to a new state where ice loss occurred primarily by surface ablation. We conclude that the Laurentide ice sheet remained a viable ice sheet before the Holocene and began to fully deglaciate only once summer temperatures and radiative forcing over the ice sheet increased by 6–7 °C and 16–20 W m−2, respectively, relative to full glacial conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deglacial forcings of surface mass balance and model results.
Figure 2: Simulated surface mass balance maps for the LIS.
Figure 3: Regional comparison of deglacial surface mass balance.

Similar content being viewed by others

References

  1. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth’s orbit: Pacemaker of the ice ages. Science 194, 1121–1132 (1976).

    Article  Google Scholar 

  2. Imbrie, J. et al. On the structure and origin of major glaciation cycles 2. The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    Article  Google Scholar 

  3. Raymo, M. E. The timing of major climate terminations. Paleoceanography 12, 577–585 (1997).

    Article  Google Scholar 

  4. Carlson, A. E. & Winsor, K. Northern Hemisphere ice-sheet responses to past climate warming. Nature Geosci. 5, 607–613 (2012).

    Article  Google Scholar 

  5. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–55 (2012).

    Article  Google Scholar 

  6. Abe-Ouchi, A. et al. Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500, 190–194 (2013).

    Article  Google Scholar 

  7. Wolff, E. W., Fischer, H. & Röthlisberger, R. Glacial terminations as southern warmings without northern control. Nature Geosci. 2, 206–209 (2009).

    Article  Google Scholar 

  8. Heinemann, M. et al. Deglacial ice sheet meltdown: Orbital pacemaking and CO2 effects. Clim. Past 10, 1567–1579 (2014).

    Article  Google Scholar 

  9. Gregory, J. M. & Huybrechts, P. Ice-sheet contributions to future sea-level change. Phil. Trans. R. Soc. A. 364, 1709–1731 (2006).

    Article  Google Scholar 

  10. Anslow, F. S. et al. Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty. J. Geophys. Res. 113, F02019 (2008).

    Article  Google Scholar 

  11. Carlson, A. E. et al. Surface-melt driven Laurentide ice sheet retreat during the early Holocene. Geophys. Res. Lett. 36, L24502 (2009).

    Article  Google Scholar 

  12. Carlson, A. E. & Clark, P. U. Ice sheet sources of sea level rise and freshwater discharge during the last deglaciation. Rev. Geophys. 50, RG4007 (2012).

    Article  Google Scholar 

  13. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  Google Scholar 

  14. Notz, D. The future of ice sheets and sea ice: Between reversible retreat and unstoppable loss. Proc. Natl Acad. Sci. USA 106, 20590–20595 (2009).

    Article  Google Scholar 

  15. Calov, R. & Ganopolski, A. Multistability and hysteresis in the climate–cryosphere system under orbital forcing. Geophys. Res. Lett. 32, L21717 (2005).

    Article  Google Scholar 

  16. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. Change 2, 429–423 (2012).

    Article  Google Scholar 

  17. Rignot, E. et al. Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. Geophys. Res. Lett. 38, L05503 (2011).

    Article  Google Scholar 

  18. Gregoire, L. J., Payne, A. J. & Valdes, P. J. Deglacial rapid sea level rises caused by ice-sheet saddle collapses. Nature 487, 219–223 (2012).

    Article  Google Scholar 

  19. Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

    Article  Google Scholar 

  20. Parrenin, F. et al. Synchronous change of atmospheric CO2 and Antarctic temperature during the last deglacial warming. Science 339, 1060–1063 (2013).

    Article  Google Scholar 

  21. Pollard, D. A simple ice sheet model yields realistic 100 kyr glacial cycles. Nature 296, 334–338 (1982).

    Article  Google Scholar 

  22. Weertman, J. Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261, 17–20 (1976).

    Article  Google Scholar 

  23. Dyke, A. S. in Quaternary Glaciations—Extent and Chronology, Part II (eds Ehlers, J. & Gibbard, P. L.) 373–424 (Elsevier Science and Technology Books, 2004).

    Book  Google Scholar 

  24. Licciardi, J. M. et al. Deglaciation of a soft-bedded Laurentide ice sheet. Quat. Sci. Rev. 17, 427–448 (1998).

    Article  Google Scholar 

  25. Marshall, S. J., James, T. S. & Clarke, G. K. C. North American ice sheet reconstructions at the last glacial maximum. Quat. Sci. Rev. 21, 175–192 (2002).

    Article  Google Scholar 

  26. Pollard, D. et al. Comparisons of ice-sheet surface mass budgets from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Glob. Planet. Change 24, 79–106 (2000).

    Article  Google Scholar 

  27. van de Berg, W. J. et al. Significant contribution of insolation to Eemian melting of the Greenland ice sheet. Nature Geosci. 4, 679–683 (2011).

    Article  Google Scholar 

  28. Stokes, C. R. & Tarasov, L. Ice streaming in the Laurentide ice sheet: A first comparison between data-calibrated numerical model output and geological evidence. Geophys. Res. Lett. 37, L01501 (2010).

    Article  Google Scholar 

  29. Schmidt, G. A. et al. Configuration and assessment of the GISS ModelE2 contributions to the CMIP5 archive. J. Adv. Model. Earth Syst. 6, 141–184 (2014).

    Article  Google Scholar 

  30. Dyke, A. S. & Prest, V. K. Late Wisconsinan and Holocene history of the Laurentide ice sheet. Geogr. Phys. Quat. 41, 237–263 (1987).

    Google Scholar 

  31. Liu, Z. et al. Transient simulation of the last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314 (2009).

    Article  Google Scholar 

  32. Kageyama, M. et al. Modelling glacial climatic millennial-scale variability related to changes in the Atlantic meridional overturning circulations: A review. Quat. Sci. Rev. 29, 2931–2956 (2010).

    Article  Google Scholar 

  33. Berger, A. & Loutre, M. F. Isolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  34. Joos, F. & Spahni, R. Rates of change in natural and anthropogenic radiative forcing over the past 20,000 years. Proc. Natl Acad. Sci. USA 105, 1425–1430 (2008).

    Article  Google Scholar 

  35. Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  36. Clark, P. U. Surface form of the southern Laurentide ice sheet and its implications to ice-sheet dynamics. GSA Bull. 104, 595–695 (1992).

    Article  Google Scholar 

  37. Bobrowsky, P. & Rutter, N. W. The Quaternary geologic history of the Canadian Rocky Mountains. Géogr. Phys. Quat. 46, 5–50 (1992).

    Google Scholar 

  38. Catto, N. et al. Laurentide, Cordilleran, and montane glaciation in the Western Peace River – Grande Prairie Region, Alberta and British Columbia, Canada. Quat. Int. 32, 21–32 (1996).

    Article  Google Scholar 

  39. Hartman, G. M. D. & Clague, J. J. Quaternary stratigraphy and glacial history of the Peace River valley, northeast British Columbia. Canad. J. Earth Sci. 45, 549–564 (2008).

    Article  Google Scholar 

  40. Margold, M. et al. Retreat pattern of the Cordilleran ice sheet in central British Columbia at the end of the last glaciation reconstructed from glacial meltwater landforms. Boreas 42, 830–847 (2013).

    Google Scholar 

  41. Ullman, D. J. et al. Southern Laurentide ice-sheet retreat synchronous with rising boreal summer insolation. Geology 43, 23–26 (2015).

    Article  Google Scholar 

  42. Knutti, R., Masson, D. & Gettelman, A. Climate model geneaology: Generation CMIP5 and how we got there. Geophys. Res. Lett. 40, 1194–1199 (2013).

    Article  Google Scholar 

  43. Qu, X. & Hall, A. On the persistent spread in snow-albedo feedback. Clim. Dynam. 42, 69–81 (2013).

    Article  Google Scholar 

  44. Masters, T. Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Clim. Dynam. 42, 2173–2181 (2014).

    Article  Google Scholar 

  45. Sheffield, J. et al. North American climate in CMIP5 experiments, Part I: Evaluation of historical simulations of continental and regional climatology. J. Clim. 26, 9209–9245 (2013).

    Article  Google Scholar 

  46. Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  47. Grootes, P. M. et al. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366, 552–554 (1993).

    Article  Google Scholar 

  48. Thompson, L. G. et al. A 25,000-year tropical climate history from Bolivian ice cores. Science 282, 1858–1864 (1998).

    Article  Google Scholar 

  49. Wang, Y. J. et al. A high-resolution absolute-dated late Pleistocene monsoon record from Hulu Cave, China. Science 294, 2345–2348 (2001).

    Article  Google Scholar 

  50. Bar-Matthews, M. et al. Sea-land oxygen isotopic relationships from planktonic foraminifera and speleothems in the Eastern Mediterranean region and their implication for paleorainfall during interglacial intervals. Geochim. Cosmochim. Acta 67, 3181–3199 (2003).

    Article  Google Scholar 

  51. Holmgren, K. et al. Persistent millennial-scale climatic variability over the past 25,000 years in Southern Africa. Quat. Sci. Rev. 22, 2311–2326 (2003).

    Article  Google Scholar 

  52. Cruz, F. W. et al. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. Nature 483, 63–66 (2005).

    Article  Google Scholar 

  53. Dykoski, C. A. et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China. Earth Planet. Sci. Lett. 233, 71–86 (2005).

    Article  Google Scholar 

  54. Williams, P. W. et al. Late Pleistocene to Holocene composite speleothem 18O and 13C chronologies from South Island, New Zealand—did a global Younger Dryas really exist? Earth Planet. Sci. Lett. 230, 301–317 (2005).

    Article  Google Scholar 

  55. Partin, J. et al. Millennial-scale trends in west Pacific warm pool hydrology since the Last Glacial Maximum. Nature 449, 452–455 (2007).

    Article  Google Scholar 

  56. Wang, X. et al. Millennial-scale precipitation changes in southern Brazil over the past 90,000 years. Geophys. Res. Lett. 34, L23701 (2007).

    Google Scholar 

  57. Svensson, A. et al. A 60 000 year Greenland stratigraphic ice core chronology. Clim. Past. 4, 47–57 (2008).

    Article  Google Scholar 

  58. Cheng, H. et al. The climatic cyclicity in semiarid-arid central Asia over the past 500,000 years. Geophys. Res. Lett. 39, L01705 (2012).

    Article  Google Scholar 

  59. Tarasov, L. & Peltier, W. R. Greenland glacial history and local geodynamic consequences. Geophys. J. Int. 150, 198–229 (2002).

    Article  Google Scholar 

  60. LaCavalier, B. S. et al. A model of Greenland ice sheet deglaciation constrained by observations of relative sea level and ice extent. Quat. Sci. Rev. 21, 175–192 (2014).

    Google Scholar 

  61. van de Wal, R. S. W. Mass-balance modeling of the Greenland ice-sheet: A comparison of an energy balance and a degree-day model. Ann. Glaciol. 23, 36–45 (1996).

    Article  Google Scholar 

  62. Bougamont, M. et al. Impact of model physics on estimating the surface mass balance of the Greenland ice sheet. Geophys. Res. Lett. 34, L17501 (2007).

    Article  Google Scholar 

  63. Grainger, M. E. & Lister, H. Wind speed, stability and eddy viscosity over melting ice surfaces. J. Glaciol. 6, 101–127 (1966).

    Article  Google Scholar 

  64. Duynkerke, P. G. & van den Broeke, M. R. Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Glob. Planet. Change 9, 17–28 (1994).

    Article  Google Scholar 

  65. Greuell, W. & Konzelmann, T. Numerical modeling of the energy balance and the englacial temperature of the Greenland ice sheet. Calculations for the ETH-Camp location (West Greenland, 1155 m a.s.l.). Glob. Planet. Change 9, 91–114 (1994).

    Article  Google Scholar 

  66. Smeets, C. J. P. P. & van den Broeke, M. R. Temporal and spatial variations of the aerodynamic roughness length in the ablation zone of the Greenland ice sheet. Bound.-Lay. Meteorol. 128, 315–338 (2008).

    Article  Google Scholar 

  67. van den Berg, J., van de Wal, R. S. W. & Oerlemans, J. Effects of spatial discretization in ice-sheet modeling using the shallow-ice approximation. J. Glaciol. 52, 89–98 (2006).

    Article  Google Scholar 

  68. Porter, S. C. et al. in Late Quaternary Environments of the United States (eds Wright, H. E. Jr & Porter, S. C.) 71–111 Vol. 1 (University of Minnesota Press, 1983).

    Google Scholar 

  69. Davis, P. T. Holocene glacier fluctuations in the American Cordillera. Quat. Sci. Rev. 7, 129–157 (1988).

    Article  Google Scholar 

  70. Pierce, K. L. Pleistocene glaciations of the Rocky mountains. Dev. Quat. Sci. 1, 63–76 (2003).

    Google Scholar 

  71. Broecker, W. S. & Denton, G. H. The role of ocean-atmosphere reorganizations in glacial cycles. Quat. Sci. Rev. 9, 305–341 (1990).

    Article  Google Scholar 

  72. Zwally, H. J. & Giovinetto, M. B. Balance mass flux and ice velocity across the equilibrium line in drainage systems of Greenland. J. Geophys. Res. 106, 33717–33728 (2001).

    Article  Google Scholar 

  73. Reeh, N. Parameterization of melt rate and surface temperature on the Greenland ice sheet. Polarforschung 53, 113–128 (1991).

    Google Scholar 

  74. Braithwaite, R. J. Positive degree-day factors for ablation on the Greenland ice sheet studied by energy-balance modelling. J. Glaciol. 41, 153–160 (1995).

    Article  Google Scholar 

  75. Ullman, D. J. et al. Assessing the impact of Laurentide ice-sheet topography on glacial climate. Clim. Past 10, 487–507 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

United States National Science Foundation awards AGS-0753660 (A.E.C.), AGS-0753868 (A.N.L.), and the National Aeronautics and Space Administration supported this research.

Author information

Authors and Affiliations

Authors

Contributions

A.E.C., A.N.L. and F.S.A. conceived the study; D.J.U., A.N.L., A.E.C. and J.M.L. created deglacial boundary conditions for AOGCM and surface mass balance simulations; A.N.L. conducted GISS ModelE2-R simulations. D.J.U., F.S.A. and A.E.C. implemented the surface energy balance model. D.J.U., A.E.C. and A.N.L. synthesized the results. D.J.U. and A.E.C. wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to David J. Ullman or Anders E. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2436 kb)

Supplementary Information

Supplementary Information (ZIP 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullman, D., Carlson, A., Anslow, F. et al. Laurentide ice-sheet instability during the last deglaciation. Nature Geosci 8, 534–537 (2015). https://doi.org/10.1038/ngeo2463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2463

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing