Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertical deformation through a complete seismic cycle at Isla Santa María, Chile

Abstract

Individual great earthquakes are posited to release the elastic strain energy that has accumulated over centuries by the gradual movement of tectonic plates1,2. However, knowledge of plate deformation during a complete seismic cycle—two successive great earthquakes and the intervening interseismic period—remains incomplete3. A complete seismic cycle began in south-central Chile in 1835 with an earthquake of about magnitude 8.5 (refs 4, 5) and ended in 2010 with a magnitude 8.8 earthquake6. During the first earthquake, an uplift of Isla Santa María by 2.4 to 3 m was documented4,5. In the second earthquake, the island was uplifted7 by 1.8 m. Here we use nautical surveys made in 1804, after the earthquake in 1835 and in 1886, together with modern echo sounder surveys and GPS measurements made immediately before and after the 2010 earthquake, to quantify vertical deformation through the complete seismic cycle. We find that in the period between the two earthquakes, Isla Santa María subsided by about 1.4 m. We simulate the patterns of vertical deformation with a finite-element model and find that they agree broadly with predictions from elastic rebound theory2. However, comparison with geomorphic and geologic records of millennial coastline emergence8,9 reveal that 10–20% of the vertical uplift could be permanent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isla Santa María.
Figure 2: Surveys of Rada Santa María.
Figure 3: Elevation changes at Isla Santa María inferred from changes in water depth.
Figure 4: Modelling elevation changes.

Similar content being viewed by others

References

  1. Reid, H. F. The California Earthquake of April 18, 1906: The Mechanics of the Earthquake (Carnegie Inst., 1910).

    Google Scholar 

  2. Savage, J. C. A dislocation model of strain accumulation and release at a subduction zone. J. Geophys. Res. 88, 4984–4996 (1983).

    Article  Google Scholar 

  3. Wang, K., Hu, Y. & He, J. Deformation cycles of subduction earthquakes in a viscoelastic Earth. Nature 484, 327–332 (2012).

    Article  Google Scholar 

  4. Darwin, C. Narrative of the Surveying Voyages of His Majesty’s Ships Adventure and Beagle, Between the Years 1826 and 1836: Journal and Remarks, 1832–1836 Vol. 3 (Henry Colburn, 1839).

    Google Scholar 

  5. FitzRoy, R. Narrative of the Surveying Voyages of his Majesty’s Ships Adventure and Beagle, Between the Years 1826 and 1836, Proceedings of the Second Expedition, 1831–1836 Vol. 2 (Henry Colburn, 1839).

    Google Scholar 

  6. Vigny, C. et al. The 2010 M-w 8.8 Maule megathrust earthquake of central Chile, monitored by GPS. Science 332, 1417–1421 (2011).

    Article  Google Scholar 

  7. Moreno, M. et al. Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake. Earth Planet. Sci. Lett. 321–322, 152–165 (2012).

    Article  Google Scholar 

  8. Bookhagen, B., Echtler, H., Melnick, D., Strecker, M. & Spencer, J. Using uplifted Holocene beach berms for paleoseismic analysis on the Santa María Island, south-central Chile. Geophys. Res. Lett. 33, L15302 (2006).

    Article  Google Scholar 

  9. Jara-Muñoz, J. & Melnick, D. Unraveling sea-level variations and tectonic uplift in wave-built marine terraces, Santa María Island, Chile. Quat. Res. 83, 216–228 (2015).

    Article  Google Scholar 

  10. Satake, K. & Atwater, B. F. Long-term perspectives on giant earthquakes and tsunamis at subduction zones. Annu. Rev. Earth Planet. Sci. 35, 349–374 (2007).

    Article  Google Scholar 

  11. Meltzner, A. J. et al. Coral evidence for earthquake recurrence and an A.D. 1390–1455 cluster at the south end of the 2004 Aceh–Andaman rupture. J. Geophys. Res. 115, B10402 (2010).

    Article  Google Scholar 

  12. Cisternas, M. et al. Predecessors of the giant 1960 Chile earthquake. Nature 437, 404–407 (2005).

    Article  Google Scholar 

  13. Shennan, I., Barlow, N. L. M. & Combellick, R. in Active Tectonics and Seismic Potential of Alaska (eds Freymueller, J. T., Haeussler, P. J., Wesson, R. L. & Ekstrom, G.) 185–199 (Geophysical Monograph Series, AGU, 2008).

    Google Scholar 

  14. Sawai, Y., Namegaya, Y., Okamura, Y., Satake, K. & Shishikura, M. Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys. Res. Lett. 39, L21309 (2012).

    Article  Google Scholar 

  15. Lomnitz, C. Major earthquakes of Chile: A historical survey, 1535–1960. Seismol. Res. Lett. 75, 368–378 (2004).

    Article  Google Scholar 

  16. Ovalle, A. d. Historica relacion del Reyno de Chile, y de las missiones, y ministerios que exercita en el la Compañia de Iesus (Francisco Caballo, 1646).

    Google Scholar 

  17. Melnick, D., Bookhagen, B., Echtler, H. P. & Strecker, M. R. Coastal deformation and great subduction earthquakes, Isla Santa Maria, Chile (37° S). Bull. Geol. Soc. Am. 118, 1463–1480 (2006).

    Article  Google Scholar 

  18. King, P. P. & FitzRoy, R. The South America Pilot. Part II, Comprising Magellan Strait, Tierra del Fuego and West Coast of South America from Cape Virgins (S. E. Coast) to Panamá Bay, Including the Galápagos Islands (Published by order of the Lords Commissioners of the Admiralty, and printed for the Hydrographic Office, 1860).

  19. Darwin, C. Geological Observations on South America, Being the Third Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. FitzRoy R. N., During the Years 1832 to 1836 (Smith, Elder and Co, 1846).

    Google Scholar 

  20. Plafker, G. & Savage, J. Mechanism of the Chilean earthquakes of May 21 and 22, 1960. Bull. Geol. Soc. Am. 81, 1001–1030 (1970).

    Article  Google Scholar 

  21. Melnick, D., Cisternas, M., Moreno, M. & Norambuena, R. Estimating coseismic coastal uplift with an intertidal mussel: Calibration for the 2010 Maule, Chile earthquake (Mw = 8.8). Quat. Sci. Rev. 42, 29–42 (2012).

    Article  Google Scholar 

  22. Oficiales del Bergantín Peruano y Goleta Estremeña. Plano de la Isla Santa María en la Costa del Reyno de Chile (Dirección Hidrográfica, 1819).

  23. Officers of the HMS Beagle. Santa Maria Island, South America, Coast of Chile (Hydrographic Office of the Admiralty, 1840).

  24. Comisión Hidrográfica de la Bahía Arauco a bordo de la cañonera Magallanes al mando del Cap. C. don A. Wilson. Isla Santa María, Costas de Chile (Oficina Hidrográfica, 1887).

  25. Melnick, D., Moreno, M., Motagh, M., Cisternas, M. & Wesson, R. L. Splay fault slip during the Mw 8.8 2010 Maule Chile earthquake. Geology 40, 251–254 (2012).

    Article  Google Scholar 

  26. Moreno, M. et al. Heterogeneous plate locking in the South–Central Chile subduction zone: Building up the next great earthquake. Earth Planet. Sci. Lett. 305, 413–424 (2011).

    Article  Google Scholar 

  27. Tormann, T., Enescu, B., Woessner, J. & Wiemer, S. Randomness of megathrust earthquakes implied by rapid stress recovery after the Japan earthquake. Nature Geosci. 8, 152–158 (2015).

    Article  Google Scholar 

  28. Udías, A., Madariaga, R., Buforn, E., Muñoz, D. & Ros, M. The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents. Bull. Seismol. Soc. Am. 102, 1639–1653 (2012).

    Article  Google Scholar 

  29. Peltier, W. R. Global glacial isostasy and the surface of the ice-age earth: The ICE-5G (VM2) Model and GRACE. Ann. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Article  Google Scholar 

  30. Hardebeck, J. L. Coseismic and postseismic stress rotations due to great subduction zone earthquakes. Geophys. Res. Lett. 39, L21313 (2012).

    Article  Google Scholar 

  31. Egbert, G. D. & Erofeeva, S. Y. TPXO 8 Atlas Webpage (2013); http://volkov.oce.orst.edu/tides/tpxo8_atlas.html

  32. Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).

    Article  Google Scholar 

  33. Mathworks MATLAB Documentation (2015); http://www.mathworks.com/help/matlab/ref/delaunay.html

  34. Ciscár, D. G. Curso de Estudios Elementales de Marina, Tomo IV, Que Contiene el Tratado de Pilotage (La Imprenta Real, 1811).

    Google Scholar 

  35. de Salazar, D. L. M. Discurso Sobre los Progresos y Estado Actual de la Hidrografía en España (La Imprenta Real, 1809).

    Google Scholar 

  36. Bowditch, N. & Bowditch, J. I. American Practical Navigator (US Govt Print. Off., 1826).

    Google Scholar 

  37. Ritchie, G. S. The Admiralty Chart: British Naval Hydrography in the Nineteenth Century (Elsevier, 1967).

    Google Scholar 

  38. Mackenzie, M. & Horsburgh, J. Treatise on Marine Surveying (1819).

    Google Scholar 

  39. Haggard, J. V. Handbook for Translators of Spanish Historical Documents (Semco Color Press, 1941).

    Google Scholar 

  40. Golfo de Arauco No. 6120 (Servicio Hidrogrfico y Oceanogrfico de la Armada de Chile (SHOA), 2004).

  41. Watson, G. A. Computing Helmert transformations. J. Comput. Appl. Math. 197, 387–394 (2006).

    Article  Google Scholar 

  42. Taylor, B. N. & Kuyatt, C. E. Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST Technical Note 1297, National Institute of Standards and Technology, 1994).

    Book  Google Scholar 

  43. Coleman, H. W. & Steele, W. G. Experimentation, Validation, and Uncertainty Analysis for Engineers (John Wiley, 2009).

    Book  Google Scholar 

  44. Bedford, J. et al. A high-resolution, time-variable afterslip model for the 2010 Maule Mw = 8.8, Chile megathrust earthquake. Earth Planet. Sci. Lett. 383, 26–36 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Chilean National Fund for Development of Science and Technology (FONDECYT) grants 1110848 and 1150321 (M.C.), National Geographic Society Scientific Research grant 8577-08 (L.L.E. and M.C.), German Science Foundation (DFG) grants ME 3157/2-2 (D.M.) and MO 2310/1-1 (MARISCOS) (M.M.), and the US National Science Foundation (NSF) grants RAPID EAR-1036057 (L.L.E. and R.L.W.) and EAR-1145170 (L.L.E.). Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

R.L.W. and D.M. conceived the project and performed the bathymetric surveys. M.M. and D.M. carried out survey GPS measurements. M.M. processed GPS data and calculated Green’s functions for estimating model subsidence rates. M.C. provided historical data and interpretation. M.C. and L.L.E. participated in fieldwork. All authors contributed to data interpretation and writing of the paper.

Corresponding author

Correspondence to Robert L. Wesson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6109 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wesson, R., Melnick, D., Cisternas, M. et al. Vertical deformation through a complete seismic cycle at Isla Santa María, Chile. Nature Geosci 8, 547–551 (2015). https://doi.org/10.1038/ngeo2468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2468

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing