Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Short eruption window revealed by absolute crystal growth rates in a granitic magma

Abstract

The potential for cataclysmic volcanic eruptions1 depends on the volume of magma stored in shallow crustal reservoirs and the amount of time over which magma can accumulate without cooling and crystallizing to form a pluton of solid rock. Magma reservoir volume and longevity are, in turn, controlled by the flux of new magma into the system and the crystal content of the reservoir2,3,4,5,6. To understand why some magmas erupt, whereas others solidify in the crust, the timescales for crystal growth and upper-crust magma residence must be determined from both erupted volcanic rocks and intruded plutonic rocks7. However, our understanding of these timescales is largely restricted to volcanic rocks only8,9,10,11,12,13,14 and measurements from plutonic rocks are missing. Here we use U–Pb geochronological dating of zircon crystals sampled from a seven-million-year-old upper crustal pluton in Elba, Italy. The zircon crystals were found as inclusions within the cores and rims of 6–8-cm-long potassium-feldspar megacrysts and constrain the rate of megacryst growth to 0.2–1.1 μm yr1. We combine the measured growth rates with petrological observations and phase-equilibrium modelling to show that the transition from eruptible magmas to immobile granitic mush and pluton formation occurred in just 10–40 thousand years. This short time window for a potential eruption implies that some magmas reside in upper crustal reservoirs for only a brief period before eruption.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Geologic map, field observations and CA-TIMS U–Pb geochronology.
Figure 2: CA-TIMS U–Pb geochronologic results.
Figure 3: Time-resolved petrologic model for the San Martino and Sant’Andrea magmas.

Similar content being viewed by others

References

  1. Bachmann, O. & Bergantz, G. The magma reservoirs that feed supereruptions. Elements 4, 17–21 (2008).

    Article  Google Scholar 

  2. Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    Article  Google Scholar 

  3. Schöpa, A. & Annen, C. The effects of magma flux variations on the formation and lifetime of large silicic magma chambers. J. Geophys. Res. 118, 926–942 (2013).

    Article  Google Scholar 

  4. Bachmann, O. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).

    Article  Google Scholar 

  5. Huber, C., Bachmann, O. & Dufek, J. Thermo-mechanical reactivation of locked crystal mushes: Melting-induced internal fracturing and assimilation processes in magmas. Earth Planet. Sci. Lett. 304, 443–454 (2011).

    Article  Google Scholar 

  6. Gelman, S. E., Gutierrez, F. J. & Bachmann, O. On the longevity of large upper crustal silicic magma reservoirs. Geology 41, 759–762 (2013).

    Article  Google Scholar 

  7. Costa, F. & Dungan, M. Short time scales of magmatic assimilation from diffusion modeling of multiple elements in olivine. Geology 33, 837–840 (2005).

    Article  Google Scholar 

  8. Costa, F., Chakraborty, S. & Dohmen, R. Diffusion coupling between trace and major elements and a model for calculation of magma residence times using plagioclase. Geochim. Cosmochim. Acta 67, 2189–2200 (2003).

    Article  Google Scholar 

  9. Druitt, T. H., Costa, F., Deloule, É., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  Google Scholar 

  10. Condomines, M. Timescales of magma chamber processes and dating of young volcanic rocks. Am. Mineral. 52, 125–174 (2003).

    Google Scholar 

  11. Claiborne, L. L., Miller, C. F., Flanagan, D. M., Clynne, M. A. & Wooden, J. L. Zircon reveals protracted magma storage and recycling beneath Mount St. Helens. Geology 38, 1011–1014 (2010).

    Article  Google Scholar 

  12. Cooper, K. M. & Kent, A. J. R. Rapid remobilization of magmatic crystals kept in cold storage. Nature 506, 480–483 (2014).

    Article  Google Scholar 

  13. Ruprecht, P. & Cooper, K. M. Integrating the uranium-series and elemental diffusion geochronometers in mixed magmas from Volcan Quizapu, Central Chile. J. Petrol. 53, 841–871 (2012).

    Article  Google Scholar 

  14. Schmitt, A. K. et al. Acigöl rhyolite field, Central Anatolia (part 1): High-resolution dating of eruption episodes and zircon growth rates. Contrib. Mineral. Petrol. 162, 1215–1231 (2011).

    Article  Google Scholar 

  15. Mills, R. D. & Coleman, D. S. Temporal and chemical connections between plutons and ignimbrites from the Mount Princeton magmatic center. Contrib. Mineral. Petrol. 165, 961–980 (2013).

    Article  Google Scholar 

  16. Annen, C. From plutons to magma chambers: Thermal constraints on the accumulation of eruptible silicic magma in the upper crust. Earth Planet. Sci. Lett. 284, 409–416 (2009).

    Article  Google Scholar 

  17. Rosenbaum, G. & Lister, G. S. Neogene and Quaternary rollback evolution of the Tyrrhenian Sea, the Apennines, and the Sicilian Maghrebides. Tectonics 23, TC1013 (2004).

    Article  Google Scholar 

  18. Gasparon, M., Rosenbaum, G., Wijbrans, J. & Manetti, P. The transition from subduction arc to slab tearing: Evidence from Capraia Island, northern Tyrrhenian Sea. J. Geodyn. 47, 30–38 (2009).

    Article  Google Scholar 

  19. Rocchi, S., Westerman, D. S., Dini, A. & Farina, F. Intrusive sheets and sheeted intrusions at Elba Island, Italy. Geosphere 6, 225–236 (2010).

    Article  Google Scholar 

  20. Farina, F., Dini, A., Innocenti, F., Rocchi, S. & Westerman, D. S. Rapid incremental assembly of the Monte Capanne pluton (Elba Island, Tuscany) by downward stacking of magma sheets. Geol. Soc. Am. Bull. 122, 1463–1479 (2010).

    Article  Google Scholar 

  21. Bussy, F. Pétrogenèse des enclaves microgrenues associées aux granitoïdes calco-alcalins: Exemple des massifs varisque du Mont-Blanc (Alpes occidentales) et Miocène du Monte Capanne (Ile d’Elbe, Italie). Mémoire de Géologic, Lausanne 7, 1–309 (1991).

    Google Scholar 

  22. Westerman, D. S., Dini, A., Innocenti, F. & Rocchi, S. Rise and fall of a nested Christmas-tree laccolith complex, Elba Island, Italy. Geol. Soc. Lond. Spec. Publ. 234, 195–213 (2004).

    Article  Google Scholar 

  23. Dini, A., Innocenti, F., Rocchi, S., Tonarini, S. & Westerman, D. S. The magmatic evolution of the late Miocene laccolith–pluton–dyke granitic complex of Elba Island, Italy. Geol. Magn. 139, 1–23 (2002).

    Article  Google Scholar 

  24. Gagnevin, D. Microchemical and Sr isotopic investigation of zoned K-feldspar megacrysts: Insights into the petrogenesis of a granitic system and disequilibrium crystal growth. J. Petrol. 46, 1689–1724 (2005).

    Article  Google Scholar 

  25. Johnson, B. R. & Glazner, A. F. Formation of K-feldspar megacrysts in granodioritic plutons by thermal cycling and late-stage textural coarsening. Contrib. Mineral. Petrol. 159, 599–619 (2010).

    Article  Google Scholar 

  26. Glazner, A. F. & Johnson, B. R. Late crystallization of K-feldspar and the paradox of megacrystic granites. Contrib. Mineral. Petrol. 166, 777–799 (2013).

    Article  Google Scholar 

  27. Gualda, G. A. R., Ghiorso, M. S., Lemons, R. V. & Carley, T. L. Rhyolite-MELTS: A modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J. Petrol. 53, 875–890 (2012).

    Article  Google Scholar 

  28. Wolfe, E. W. & Hoblitt, R. P. in Fire and Mud: Eruptions and Lahars of Mount Pinatubo, Philippines (eds Newhall, C. G. & Punongbayan, R. S.) 751–766 (Philippine Inst. Volcanol. & Seismol./Univ. Washington Press, 1996).

    Google Scholar 

  29. Tilling, R. I. Eruptions of the Mount St. Helens: Past, Present, and Future (US Geol. Survey, 1984).

    Google Scholar 

Download references

Acknowledgements

Funding for this project was provided by the Swiss National Science Foundation and Princeton University. We thank F. Bussy for assistance in the field and use of thin sections. We thank C. Annen and S. Bowring for comments that improved an early version of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

M.B. and B.S. jointly conceived the project, obtained funding, developed the interpretations and wrote the manuscript. Geochronology and Rhyolite-MELTS modelling was carried out by M.B. under the supervision of B.S.

Corresponding author

Correspondence to Mélanie Barboni.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5450 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barboni, M., Schoene, B. Short eruption window revealed by absolute crystal growth rates in a granitic magma. Nature Geosci 7, 524–528 (2014). https://doi.org/10.1038/ngeo2185

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2185

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing