Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The acceleration of oceanic denitrification during deglacial warming

Abstract

Over much of the ocean’s surface, productivity and growth are limited by a scarcity of bioavailable nitrogen. Sedimentary δ15N records spanning the last deglaciation suggest marked shifts in the nitrogen cycle during this time, but the quantification of these changes has been hindered by the complexity of nitrogen isotope cycling. Here we present a database of δ15N in sediments throughout the world’s oceans, including 2,329 modern seafloor samples, and 76 timeseries spanning the past 30,000 years. We show that the δ15N values of modern seafloor sediments are consistent with values predicted by our knowledge of nitrogen cycling in the water column. Despite many local deglacial changes, the globally averaged δ15N values of sinking organic matter were similar during the Last Glacial Maximum and Early Holocene. Considering the global isotopic mass balance, we explain these observations with the following deglacial history of nitrogen inventory processes. During the Last Glacial Maximum, the nitrogen cycle was near steady state. During the deglaciation, denitrification in the pelagic water column accelerated. The flooding of continental shelves subsequently increased denitrification at the seafloor, and denitrification reached near steady-state conditions again in the Early Holocene. We use a recent parameterization of seafloor denitrification to estimate a 30–120% increase in benthic denitrification between 15,000 and 8,000 years ago. Based on the similarity of globally averaged δ15N values during the Last Glacial Maximum and Early Holocene, we infer that pelagic denitrification must have increased by a similar amount between the two steady states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The global nitrogen isotopic balance.
Figure 2: The δ15N of bulk sedimentary organic matter as observed and simulated.
Figure 3: Deglacial δ15N records and export flux at 100 m.
Figure 4: Deglacial changes in denitrification and δ15Nmean.

Similar content being viewed by others

References

  1. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  2. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  Google Scholar 

  3. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755–758 (1995).

    Article  Google Scholar 

  4. Falkowski, P. G. Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387, 272–275 (1997).

    Article  Google Scholar 

  5. Schmittner, A., Oschlies, A., Matthews, H. D. & Galbraith, E. D. Future changes in climate, ocean circulation, ecosystems, and biogeochemical cycling simulated for a business-as-usual CO2 emission scenario until year 4000 AD. Glob. Biogeochem. Cycl. 22, GB1013 (2008).

    Article  Google Scholar 

  6. Sarmiento, J. L., Hughes, T. M. C., Stouffer, R. J. & Manabe, S. Simulated response of the ocean carbon cycle to anthropogenic climate warming. Nature 393, 245–249 (1998).

    Article  Google Scholar 

  7. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  Google Scholar 

  8. Robinson, R. S. et al. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27, PA4203 (2012).

    Article  Google Scholar 

  9. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).

    Article  Google Scholar 

  10. Christensen, J. J., Murray, J. W., Devol, A. H. & Codispoti, L. A. Denitrification in continental shelf sediments has major impact on the oceanic nitrogen budget. Glob. Biogeochem. Cycl. 1, 97–116 (1987).

    Article  Google Scholar 

  11. Deutsch, C., Sigman, D. M., Thunell, R. C., Meckler, A. N. & Haug, G. H. Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget. Glob. Biogeochem. Cycl. 18, GB4012 (2004).

    Article  Google Scholar 

  12. Altabet, M. A. et al. The nitrogen isotope biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I 46, 655–679 (1999).

    Article  Google Scholar 

  13. Tesdal, J., Galbraith, E. D. & Kienast, M. Nitrogen isotopes in bulk marine sediment: linking seafloor observations with subseafloor records. Biogeosciences 10, 101–118 (2013).

    Article  Google Scholar 

  14. Altabet, M. A. & Francois, R. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycl. 8, 103–116 (1994).

    Article  Google Scholar 

  15. Somes, C. J. et al. Simulating the global distribution of nitrogen isotopes in the ocean. Glob. Biogeochem. Cycl. 24, GB4019 (2010).

    Article  Google Scholar 

  16. McCarthy, M. D., Benner, R., Lee, C. & Fogel, M. L. Amino acid nitrogen isotopic fractionation patterns as indicators of heterotrophy in plankton, particulate, and dissolved organic matter. Geochim. Cosmochim. Acta 71, 4727–4744 (2007).

    Article  Google Scholar 

  17. Robinson, R. S. et al. Diatom-bound N-15/N-14: New support for enhanced nutrient consumption in the ice age subantarctic. Paleoceanography 20, PA3003 (2005).

    Article  Google Scholar 

  18. Ren, H. et al. Foraminiferal isotope evidence of reduced nitrogen fixation in the ice age Atlantic Ocean. Science 323, 244–248 (2009).

    Article  Google Scholar 

  19. Möbius, J., Gaye, B., Lahajnar, N., Bahlmann, E. & Emeis, K. C. Influence of diagenesis on sedimentary delta(15)N in the Arabian Sea over the last 130 kyr. Mar. Geol. 284, 127–138 (2011).

    Article  Google Scholar 

  20. Sherwood, O. A., Lehmann, M. F., Schubert, C. J., Scott, D. B. & McCarthy, M. D. Nutrient regime shift in the western North Atlantic indicated by compound-specific delta(15)N of deep-sea gorgonian corals. Proc. Natl Acad. Sci. USA 108, 1011–1015 (2011).

    Article  Google Scholar 

  21. Higgins, M. B., Robinson, R. S., Carter, S. J. & Pearson, A. Evidence from chlorin nitrogen isotopes for alternating nutrient regimes in the Eastern Mediterranean Sea. Earth Planet. Sci. Lett. 290, 102–107 (2010).

    Article  Google Scholar 

  22. Brunelle, B. G. et al. Evidence from diatom-bound nitrogen isotopes for Subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography 22, PA1215 (2007).

    Article  Google Scholar 

  23. Horn, M. G., Robinson, R. S., Rynearson, T. A. & Sigman, D. M. Nitrogen isotopic relationship between diatom-bound and bulk organic matter of cultured polar diatoms. Paleoceanography 26, PA3208 (2011).

    Article  Google Scholar 

  24. Pride, C. et al. Nitrogen isotopic variations in the Gulf of California since the last deglaciation: Response to global climate change. Paleoceanography 14, 397–409 (1999).

    Article  Google Scholar 

  25. Emmer, E. & Thunell, R. C. Nitrogen isotope variations in Santa Barbara Basin sediments: Implications for denitrification in the eastern tropical North Pacific during the last 50,000 years. Paleoceanography 15, 377–387 (2000).

    Article  Google Scholar 

  26. Suthhof, A., Ittekkot, V. & Gaye-Haake, B. Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N2O and global climate. Glob. Biogeochem. Cycl. 15, 637–649 (2001).

    Article  Google Scholar 

  27. Hendy, I. L. & Pedersen, T. F. Oxygen minimum zone expansion in the eastern tropical North Pacific during deglaciation. Geophys. Res. Lett. 33, L20602 (2006).

    Article  Google Scholar 

  28. De Pol-Holz, R. et al. Melting of the Patagonian Ice Sheet and deglacial perturbations of the nitrogen cycle in the eastern South Pacific. Geophys. Res. Lett. 33, L04704 (2006).

    Article  Google Scholar 

  29. Robinson, R., Mix, A. & Martinez, P. Southern Ocean control on the extent of denitrification in the southeast Pacific over the last 70 ky. Quat. Sci. Rev. 26, 201–212 (2007).

    Article  Google Scholar 

  30. Jaccard, S. L. & Galbraith, E. D. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciataion. Nature Geosci. 5, 151–156 (2012).

    Article  Google Scholar 

  31. Muratli, J. M., Chase, Z., Mix, A. C. & McManus, J. Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geosci. 3, 23–26 (2010).

    Article  Google Scholar 

  32. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    Article  Google Scholar 

  33. Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).

    Article  Google Scholar 

  34. Martinez, P. & Robinson, R. S. Increase in water column denitrification during the last deglaciation: The influence of oxygen demand in the eastern equatorial Pacific. Biogeosciences 7, 1–9 (2010).

    Article  Google Scholar 

  35. Brandes, J. A. & Devol, A. H. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycl. 16, 1120 (2002).

    Article  Google Scholar 

  36. Kienast, M. Unchanged nitrogen isotopic composition of organic matter in the South China Sea during the last climatic cycle: Global implications. Paleoceanography 15, 244–253 (2000).

    Article  Google Scholar 

  37. Bianchi, D., Dunne, J. P., Sarmiento, J. L. & Galbraith, E. D. Data-based estimates of suboxia, denitrification, and N2O production in the ocean and their sensitivities to dissolved O2 . Glob. Biogeochem. Cycl. 26, GB2009 (2012).

    Article  Google Scholar 

  38. Middelburg, J. J., Soetaert, K., Herman, P. M. J. & Heip, C. H. R. Denitrification in marine sediments: A model study. Glob. Biogeochem. Cycl. 10, 661–673 (1996).

    Article  Google Scholar 

  39. Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).

    Article  Google Scholar 

  40. Oka, A., Abe-Ouchi, A., Chikamoto, M. O. & Ide, T. Mechanisms controlling export production at the LGM: Effects of changes in oceanic physical fields and atmospheric dust deposition. Global Biochemical Cycles 25, GB2009 (2011).

    Article  Google Scholar 

  41. Kohfeld, K., Le Quéré, C., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  42. Altabet, M. A. Constraints on oceanic N balance/imbalance from sedimentary 15N records. Biogeosciences 4, 75–86 (2007).

    Article  Google Scholar 

  43. Tyrrell, T. The relative influences of nitrogen and phosphorus on oceanic primary production. Nature 400, 525–531 (1999).

    Article  Google Scholar 

  44. Hutchins, D. A. et al. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: Implications for past, present, and future ocean biogeochemistry. Limnol. Oceanogr. 52, 1293–1304 (2007).

    Article  Google Scholar 

  45. Eugster, O., Gruber, N., Deutsch, C., Jaccard, S. L. & Payne, M. R. The dynamics of the marine nitrogen cycle across the last deglaciation. Paleoceanography 28, 1–14 (2013).

    Article  Google Scholar 

  46. Lehmann, M. F. et al. The distribution of nitrate 15N/14N in marine sediments and the impact of benthic nitrogen loss on the isotopic composition of oceanic nitrate. Geochim. Cosmochim. Acta 71, 5384–5404 (2007).

    Article  Google Scholar 

  47. Lehmann, M. F., Sigman, D. M. & Berelson, W. M. Coupling the 15N/14N and 18O/ 16O of nitrate as a constraint on benthic nitrogen cycling. Mar. Chem. 88, 1–20 (2004).

    Article  Google Scholar 

  48. Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Glob. Biogeochem. Cycl. 21, GB4006 (2007).

    Article  Google Scholar 

  49. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–55 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Support for the Nitrogen Cycle in the Oceans Past and Present (NICOPP) working group meetings was provided by PAGES, IMAGES and GEOTOP. E.D.G., D.B. and M.K. are supported by the Canadian Institute for Advanced Research (CIFAR).

Author information

Authors and Affiliations

Authors

Consortia

Contributions

M.K., T.K. and E.D.G. initiated and led the NICOPP working group. J-E.T., E.D.G. and M.K. assembled the database. D.B. made the δ15N-province, benthic denitrification and box model calculations. C.S. ran the UVic biogeochemical model simulations. E.D.G. wrote the manuscript with contributions from M.K. All coauthors participated in discussions at the working group meetings and edited the manuscript, and/or contributed previously unpublished data.

Corresponding author

Correspondence to Eric D. Galbraith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4195 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galbraith, E., Kienast, M. & The NICOPP working group members. The acceleration of oceanic denitrification during deglacial warming. Nature Geosci 6, 579–584 (2013). https://doi.org/10.1038/ngeo1832

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1832

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology