Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Northern Hemisphere ice-sheet responses to past climate warming

Abstract

During ice-age glacial maxima of the last 2.6 million years, ice sheets covered large portions of the Northern Hemisphere. Records from the retreat of these ice sheets during deglaciations provide important insights into how ice sheets behave under a warming climate. During the last two deglaciations, the southernmost margins of land-based Northern Hemisphere ice sheets responded nearly instantaneously to warming caused by increased summertime solar energy reaching the Earth. Land-based ice sheets subsequently retreated at a rate commensurate with deglacial climate warming. By contrast, marine-based ice sheets experienced a delayed onset of retreat relative to warming from increased summertime solar energy, with retreat characterized by periods of rapid collapse. Both observations raise concern over the response of Earth's remaining ice sheets to carbon-dioxide-induced global warming. The almost immediate reaction of land-based ice margins to past small increases in summertime energy implies that the Greenland Ice Sheet could be poised to respond to continuing climate change. Furthermore, the prehistoric precedent of marine-based ice sheets undergoing abrupt collapses raises the potential for a less predictable response of the marine-based West Antarctic Ice Sheet to future climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Northern Hemisphere ice sheets at the last glacial maximum15,38 with the Cordilleran (CIS), Laurentide (LIS), Greenland (GIS), British-Isles (BIIS), Scandinavian (SIS) and Barents-Kara (BKIS) ice sheets labelled.
Figure 2: The last three terminations (light blue).
Figure 3: Conceptual models of ice-sheet retreat in response to increasing radiative forcing from boreal summer insolation and greenhouse gas concentrations.
Figure 4: TII ice-sheet retreat.
Figure 5: TI ice-sheet retreat.
Figure 6: TII (left) and TI (right) comparison.

Similar content being viewed by others

References

  1. Broecker, W. S. & van Donk, J. Insolation changes, ice volumes, and the O18 record in deep-sea cores. Rev. Geophys. Space Phys. 8, 169–198 (1970).

    Google Scholar 

  2. Imbrie, J. et al. On the structure and origin of major glaciation cycles 2: The 100,000-year cycle. Paleoceanography 8, 699–735 (1993).

    Article  Google Scholar 

  3. Shakun, J. D. & Carlson, A. E. A global perspective on Last Glacial Maximum to Holocene climate change. Quat. Sci. Rev. 29, 1801–1816 (2010).

    Google Scholar 

  4. Clark, P. U. et al. Global climate evolution during the last deglaciation. Proc. Natl Acad. Sci. USA 109, E1134–E1142 (2012).

    Google Scholar 

  5. Dyke, A. S. in Quaternary Glaciations: Extent and Chronology Vol. 2 (eds Ehlers, J. & Gibbard, P. L.) 373–424 (Elsevier, 2004).

    Google Scholar 

  6. Svendsen, J.-I. et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev. 23, 1229–1271 (2004).

    Google Scholar 

  7. Hays, J. D., Imbrie, J. & Shackleton, N. J. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science 194, 1121–1132 (1976).

    Google Scholar 

  8. Weertman, J. Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261, 17–20 (1976).

    Google Scholar 

  9. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Google Scholar 

  10. CAPE-Last Interglacial Project Members. Last Interglacial Arctic warmth confirms polar amplification of climate change. Quat. Sci. Rev. 25, 1383–1400 (2006).

  11. Roe, G. In defense of Milankovitch. Geophys. Res. Lett. 33, L24703 (2006).

    Google Scholar 

  12. Jouzel, J. et al. Orbital and millennial antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Google Scholar 

  13. Huybers, P. & Denton, G. Antarctic temperature at orbital timescales controlled by local summer duration. Nature Geosci. 1, 787–792 (2008).

    Google Scholar 

  14. Cheng, H. et al. Ice age terminations. Science 326, 248–252 (2009).

    Google Scholar 

  15. Clark, P. U. et al. The Last Glacial Maximum. Science 325, 710–714 (2009).

    Google Scholar 

  16. Milne, G. A., Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

    Google Scholar 

  17. Thomas, A. L. et al. Penultimate deglacial sea-Level timing from uranium/thorium dating of Tahitian corals. Science 324, 1186–1189 (2009).

    Google Scholar 

  18. Kopp, R. E. et al. Probabilistic assessment of sea level during the last interglacial stage. Nature 462, 863–867 (2009).

    Google Scholar 

  19. Overpeck, J. T. et al. Paleoclimatic evidence for future ice-sheet instability and rapid sea-level rise. Science 311, 1747–1750 (2006).

    Google Scholar 

  20. Thompson, W. G. & Goldstein, S. L. Open-system coral ages reveal persistent suborbital sea-level cycles. Science 308, 401–404 (2005).

    Article  Google Scholar 

  21. Siddall, M., Bard, E., Rohling, E. J. & Hemleben, C. Sea-level reversal during Termination II. Geology 34, 817–820 (2006).

    Google Scholar 

  22. Wood, J. R., Forman, S. L., Pierson, J. & Gomez, J. New insights on Illinoian deglaciation from deposits of Glacial Lake Quincy, central Indiana. Quat. Res. 73, 374–384 (2010).

    Google Scholar 

  23. Larsen, N. K. et al., Late Quaternary ice sheet, lake and sea history of southwest Scandinavia — a synthesis. Boreas 38, 732–761 (2009).

    Google Scholar 

  24. Green, C. L., Bigg, G. R. & Green, J. A. M. Deep draft icebergs from the Barents Ice Sheet during MIS 6 are consistent with erosional evidence from the Lomonosov Ridge, central Arctic. Geophys. Res. Lett. 37, L23606 (2010).

    Google Scholar 

  25. Stanford, J. D. et al. A new concept for the paleoceanographic evolution of Heinrich event 1 in the North Atlantic. Quat. Sci. Rev. 30, 1047–1066 (2011).

    Google Scholar 

  26. Licciardi, J. M., Teller, J. T. & Clark, P. U. in Mechanisms of Global Climate Change at Millennial Time Scales (eds Clark, P. U., Webb, R. S. & Keigwin, L. D.) 177–201 (AGU, 1999).

    Google Scholar 

  27. Carlson, A. E. Why there was not a Younger Dryas-like event during the Penultimate Deglaciation. Quat. Sci. Rev. 27, 882–887 (2008).

    Google Scholar 

  28. Stoner, J. S., Channell, J. E. T. & Hillaire-Marcel, C. Magnetic properties of deep-sea sediments off southwest Greenland: Evidence for major differences between the last two deglaciations. Geology 23, 241–244 (1995).

    Google Scholar 

  29. Carlson, A. E., Stoner, J. S., Donnelly, J. P. & Hillaire-Marcel, C. Response of the southern Greenland Ice Sheet during the last two deglaciations. Geology 36, 359–362 (2008).

    Google Scholar 

  30. Colville, E. J. et al. Sr-Nd-Pb isotope evidence for ice-sheet presence on southern Greenland during the last interglacial. Science 333, 620–623 (2011).

    Google Scholar 

  31. Tarasov, L. & Peltier, W. R. Greenland glacial history, borehole constraints, and Eemian extent. J. Geophys. Res. 108, 2143 (2003).

    Google Scholar 

  32. Cuffey, K. M. & Marshall, S. J. Substantial contribution to sea-level rise during the last interglacial from the Greenland ice sheet. Nature 404, 591–594 (2000).

    Google Scholar 

  33. Lhomme, N., Clarke, G. K. C. & Marshall, S. J. Tracer transport in the Greenland Ice Sheet: constraints on ice cores and glacial history. Quat. Sci. Rev. 24, 173–194 (2005).

    Google Scholar 

  34. Otto-Bliesner, B. L. et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753 (2006).

    Article  Google Scholar 

  35. Robinson, A., Calov, R. & Ganopolski, A. Greenland ice sheet model parameters constrained using simulations of the Eemian Interglacial. Clim. Past 7, 381–396 (2011).

    Google Scholar 

  36. Hemming, S. R. Heinrich events: massive late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    Google Scholar 

  37. Yokoyama, Y., Lambeck, K., De Deckker, P., Johnston, P. & Fifield, L. K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 406, 713–716 (2000).

    Google Scholar 

  38. Peltier, W. R. Global glacial isostacy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

    Google Scholar 

  39. Hanebuth, T. J. J., Stattegger, K. & Bojanowski, A. Termination of the Last Glacial Maximum sea-level lowstand: The Sunda-Shelf data revisited. Global Planet. Change 66, 76–84 (2009).

    Google Scholar 

  40. Clark, P. U., McCabe, A. M., Mix, A. C. & Weaver, A. J. Rapid rise of sea level 19,000 years ago and its global implications. Science 304, 1141–1144 (2004).

    Google Scholar 

  41. PALSEA Members. The sea-level conundrum: case studies from palaeo-archives. J. Quat. Sci. 25, 19–25 (2009).

  42. Deschamps, P. et al. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature 483, 559–564 (2012).

    Google Scholar 

  43. Hansel, A. K. & Johnson, W. H. Fluctuations of the Lake Michigan lobe during the late Wisconsin subepisode. Geolog. Surv. Sweden 81, 133–144 (1992).

    Google Scholar 

  44. Curry, B. B. et al. The DeKalb mounds of northeastern Illinois as archives of deglacial history and postglacial environments. Quat. Res. 74, 82–90 (2010).

    Google Scholar 

  45. Curry, B. & Petras, J. Chronological framework for the deglaciation of the Lake Michigan lobe of the Laurentide Ice Sheet from ice-walled lake deposits. J. Quat. Sci. 26, 402–410 (2011).

    Google Scholar 

  46. Mickelson, D. M., Clayton, L., Fullerton, D. S. & Borns, H. W. in Late-Quaternary Environments of the United States Vol. 1 (ed. Wright, H. E.) 3–37 (1983).

    Google Scholar 

  47. Glover, K. C. et al. Deglaciation, basin formation and post-glacial climate change from a regional network of sediment core sites in Ohio and eastern Indiana. Quat. Res. 76, 401–410 (2011).

    Google Scholar 

  48. Bettis, E. A., Jr., Quade, D. J. & Kemmis, T. J. Hogs, bogs, and logs: Quaternary deposits and environmental geology of the Des Moines Lobe. Geol. Surv. Bureau Guidebook 18, 1–170 (1996).

    Google Scholar 

  49. Balco, G., Stone, J. O. H., Porter, S. C. & Caffee, M. W. Cosmogenic-nuclide ages for New England coastal moraines, Martha's Vineyard and Cape Cod, Massachusetts, USA. Quat. Sci. Rev. 21, 2127–2135 (2002).

    Google Scholar 

  50. Balco, G. et al. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat. Geochronol. 4, 93–107 (2009).

    Google Scholar 

  51. Leventer, A., Williams, D. F. & Kennett, J. P. Dynamics of the Laurentide ice sheet during the last deglaciation: evidence from the Gulf of Mexico. Earth Planet. Sci. Lett. 59, 11–17 (1982).

    Google Scholar 

  52. Rinterknecht, V. R. et al. The last deglaciation of the southeastern sector of the Scandinavian Ice Sheet. Science 311, 1449–1452 (2006).

    Google Scholar 

  53. Goehring, B. M. et al. Late Glacial and Holocene 10Be production rates for western Norway. J. Quat. Sci. 27, 89–96 (2012).

    Google Scholar 

  54. McCabe, A. M., Clark, P. U. & Clark, J. AMS 14C dating of deglacial events in the Irish Sea Basin and other sectors of the British-Irish ice sheet. Quat. Sci. Rev. 24, 1673–1690 (2005).

    Google Scholar 

  55. Clark, J. et al.10Be chronology of the last deglaciation of County Donegal, northwestern Ireland. Boreas 38, 111–118 (2009).

    Google Scholar 

  56. Ballantyne, C. K. Extent and deglacial chronology of the last British-Irish Ice Sheet: implications of exposure dating using cosmogenic isotopes. J. Quat. Sci. 25, 515–534 (2010).

    Google Scholar 

  57. Ballantyne, C. K. & Stone, J. O. Did large ice caps persist on low ground in north-west Scotland during the Lateglacial Interstade? J. Quat. Sci. 27, 297–306 (2012).

    Google Scholar 

  58. Clark, J. et al. Response of the Irish Ice Sheet to abrupt climate change during the last deglaciation. Quat. Sci. Rev. 35, 100–115 (2012).

    Google Scholar 

  59. Clark, C. D., Hughes, A. L. C., Greenwood, S. L., Jordan, C. & Sejrup, H. P. Pattern and timing of retreat of the last British-Irish Ice Sheet. Quat. Sci. Rev. 44, 112–146 (2012).

    Google Scholar 

  60. Menot, G. et al. Early reactivation of European rivers during the last deglaciation. Science 313, 1623–1625 (2006).

    Google Scholar 

  61. Dyke, A. S. & Prest, V. K. Late Wisconsinan and Holocene history of the Laurentide Ice Sheet. Geogr. Phys. Quatern. 41, 237–263 (1987).

    Google Scholar 

  62. Pollard, D. & Thompson, S. L. Climate and ice-sheet mass balance at the Last Glacial Maximum from the GENESIS Version 2 global climate model. Quat. Sci Rev. 16, 841–863 (1997).

    Google Scholar 

  63. Landvik, J. Y. et al. The Last Glacial Maximum of Svalbard and the Barents Sea area: ice sheet extent and configuration. Quat. Sci. Rev. 17, 43–75 (1998).

    Google Scholar 

  64. Vogt, C., Knies, J., Spielhagen, R. F. & Stein, R. Detailed mineralogical evidence for two nearly identical glacial/deglacial cycles and Atlantic water advection to the Arctic Ocean during the last 90,000 years. Glob. Planet. Change 31, 23–44 (2001).

    Google Scholar 

  65. Rasmussen, T. L. et al. Paleoceanographic evolution of the SW Svalbard margin (76 °N) since 20,000 14C yr BP. Quat. Res. 67, 100–114 (2007).

    Google Scholar 

  66. Jessen, S. P., Rasmussen, T. L., Nielsen, T. & Solheim, A. A new late Weichselian and Holocene marine chronology for the western Svalbard slope 30, 000–0 cal years BP. Quat. Sci. Rev. 29, 1301–1312 (2010).

    Google Scholar 

  67. Jones, G. A. & Keigwin, L. D. Evidence from Fram Strait (78° N) for early deglaciation. Nature 336, 56–59 (1988).

    Google Scholar 

  68. Koç, N. & Jansen, E. Response of the high-latitude Northern Hemisphere to orbital climate forcing: Evidence from the Nordic Seas. Geology 22, 523–526 (1994).

    Google Scholar 

  69. Nam, S. I., Stein, R., Grobe, H. & Hubberten, H. Late Quaternary glacial-interglacial changes in sediment composition at the East Greenland continental margin and their paleoceanographic implications. Mar. Geol. 122, 243–262 (1995).

    Google Scholar 

  70. Andrews, J. T., Smith, L. M., Preston, R., Cooper, T. & Jennings, A. E. Spatial and temporal patterns of iceberg rafting (IRD) along the East Greenland margin, ca. 68° N, over the last 14 cal.ka. J. Quat. Sci. 12, 1–13 (1997).

    Google Scholar 

  71. Håkansson, L., Briner, J., Alexanderson, H., Aldahan, A. & Possnert, G. 10Be ages from central east Greenland constrain the extent of the Greenland ice sheet during the Last Glacial Maximum. Quat. Sci. Rev. 26, 2316–2321, (2007).

    Google Scholar 

  72. Rinterknecht, V., Gorokhovich, Y., Schaefer, J. & Caffee, M. Preliminary 10Be chronology for the last deglaciation of the western margin of the Greenland Ice Sheet. J. Quat. Sci. 24, 270–278 (2008).

    Google Scholar 

  73. Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Google Scholar 

  74. Barber, D. C. et al. Forcing of the cold event of 8,200 years ago by catastrophic drainage of Laurentide lakes. Nature 400, 344–348 (1999).

    Google Scholar 

  75. Li, Y.-X., Törnqvist, T. E., Nevitt, J. A. & Kohl, B. Synchronizing a sea-level jump, final Lake Agassiz drainage, and abrupt cooling 8200 years ago. Earth Planet. Sci. Lett. 315–316, 41–50 (2012).

    Google Scholar 

  76. Jennings, A. E., Hald, M., Smith, M. & Andrews, J. T. Freshwater forcing from the Greenland Ice Sheet during the Younger Dryas: evidence from southeastern Greenland shelf cores. Quat. Sci. Rev. 25, 282–298 (2006).

    Google Scholar 

  77. Bennike, O. & Björck, S. Chronology of the last recession of the Greenland Ice Sheet. J. Quat. Sci. 17, 211–219 (2002).

    Google Scholar 

  78. Roberts, D. H., Long, A. J., Schnabel, C., Freeman, S. & Simpson, M. J. R. The deglacial history of southeast sector of the Greenland Ice Sheet during the Last Glacial Maximum. Quat. Sci. Rev. 27, 1505–1516 (2008).

    Google Scholar 

  79. Roberts, D. H. et al. Ice sheet extent and early deglacial history of the southwestern sector of the Greenland Ice Sheet. Quat. Sci. Rev. 28, 2760–2773 (2009).

    Google Scholar 

  80. Simpson, M. J. R., Milne, G. A., Huybrechts, P. & Long, A. J. Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extent. Quat. Sci. Rev. 28, 1631–1657 (2009).

    Google Scholar 

  81. Young, N. E. et al. Response of Jakobshavn Isbræ, Greenland, to Holocene climate change. Geology 39, 131–134 (2011).

    Google Scholar 

  82. Ruddiman, W. F., Molfino, B., Esmay, A. & Pokras, E. Evidence bearing on the mechanism of rapid deglaciation. Climatic Change 3, 65–87 (1980).

    Google Scholar 

  83. Dutton, A. et al. Phasing and amplitude of sea-level and climate change during the penultimate interglacial. Nature Geosci. 2, 355–359 (2009).

    Google Scholar 

  84. Rohling, E. J. et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geosci. 2, 500–504 (2009).

    Google Scholar 

  85. Andersen, M. B. et al. High-precisions U-series measurements of more than 500,000 year old fossil corals. Earth Planet. Sci. Lett. 265, 229–245 (2008).

    Google Scholar 

  86. Raymo, M. E., Mitrovica, J. X. Collapse of polar ice sheets during the stage 11 interglacial. Nature 483, 453–456 (2012).

    Google Scholar 

  87. Joyce, J. E., Tjalsma, L. R. C. & Prutzman, J. M. North American glacial meltwater history for the past 2.3 m.y.: Oxygen isotope evidence from the Gulf of Mexico. Geology 21, 483–486 (1993).

    Google Scholar 

  88. Hodell, D. A., Channell, J. E. T., Curtis, J. H., Romero, O. E. & Röhl, U. Onset of “Hudson Strait” Heinrich events in the eastern North Atlantic at the end of the middle Pleistocene transition (640 ka)? Paleoceanography 23, PA4218 (2008).

    Google Scholar 

  89. de Vernal, A. & Hillaire-Marcel, C. Natural variability of Greenland climate, vegetation, and ice volume during the past million years. Science 320, 1622–1625 (2008).

    Google Scholar 

  90. Channell, J. E. T., Xuan, C. & Hodell, D. A. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth Planet. Sci. Lett. 283, 14–23 (2009).

    Google Scholar 

  91. Rahmstorf, S. A semi-empirical approach to projecting future sea-level rise. Science 315, 368–370 (2007).

    Google Scholar 

  92. Siddall, M. et al. Changing influence of Antarctic and Greenlandic temperature records on sea-level over the last glacial cycle. Quat. Sci. Rev. 29, 410–423 (2010).

    Google Scholar 

  93. Pollard, D. & DeConto, R. M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 458, 329–332 (2009).

    Google Scholar 

  94. Tarasov, L., Dyke, A. S., Neal, R. M. & Peltier, W. R. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling. Earth Planet. Sci. Lett. 315–316, 30–40 (2012).

    Google Scholar 

  95. Siddall, M. & Kaplan, M. R. A tale of two ice sheets. Nature Geosci. 1, 570–571 (2008).

    Google Scholar 

  96. Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level changes. Science 310, 456–460 (2005).

    Google Scholar 

  97. Mercer, J. H. West Antarctic ice sheet and CO2 greenhouse effect: a threat of disaster. Nature 271, 321–325 (1978).

    Google Scholar 

  98. Meehl, G. A. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the IPCC (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank F. Anslow, S. Marcott, S. Peters, and J. Shakun for their insightful comments on this manuscript, R. Kopp for providing his sea-level record, and R. Gyllencreutz, J. Mangerud, J.-I. Svendsen and Ø Lohne for sharing their compilation of Eurasian ice-sheet margin chronologies. PALSEA, a PAGES/WUN working group, was instrumental in forming the ideas presented here. A.E.C. and K.W. are supported by the National Science Foundation Paleoclimate and Graduate Research Fellowship Programs, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders E. Carlson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carlson, A., Winsor, K. Northern Hemisphere ice-sheet responses to past climate warming. Nature Geosci 5, 607–613 (2012). https://doi.org/10.1038/ngeo1528

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1528

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing