Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Caldera size modulated by the yield stress within a crystal-rich magma reservoir

Subjects

Abstract

The largest volcanic eruptions in the geologic record have no analogue in the historical record. These eruptions had global impacts1,2, but are known only through their eruptive products. They have left behind calderas that formed as the surface collapsed when eruption evacuated magma chambers at 5–15 km depths3,4. It is generally assumed that calderas reflect the spatial dimensions of underlying magma reservoirs. Here we use a numerical model of conduit flow and dynamic magma-chamber drainage to show that caldera size can be affected by the material properties of crystal-rich silicic magma. We find that magma in the chamber can experience a rheological transition during eruption. This transition causes magma near the conduit to behave as a fluid, whereas magma farther away behaves elastically and remains locked. The intervening surface—the yield surface—expands through the chamber as eruption progresses. If a yielding transition occurs, calderas can form before complete mobilization of the entire reservoir. The resulting distribution of eruption volumes is then bimodal, as observed in the geologic record. We suggest that the presence or absence of a magma yield stress determines whether caldera size reflects the true spatial extent of magma storage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The coupled conduit-flow and chamber-deformation model.
Figure 2: Dynamics of yielding and Monte Carlo results.
Figure 3: Comparison of modelled eruption magnitude and frequency with available data.

Similar content being viewed by others

References

  1. Self, S. The effects and consequences of very large explosive volcanic eruptions. Phil. Trans. R. Soc. A 364, 2073–2097 (2006).

    Article  Google Scholar 

  2. Bryan, S. E. et al. The largest volcanic eruptions on Earth. Earth Sci. Rev. 102, 207–229 (2010.).

    Article  Google Scholar 

  3. Lindsay, J. M. et al. Magmatic evolution of the La Pacana caldera system, central Andes, Chile: Compositional variation of two cogenetic large-volume felsic ignimbrites. J. Petrol. 42, 459–486 (2001).

    Article  Google Scholar 

  4. Lipman, P. Incremental assembly and prolonged consolidation of Cordilleran magma chambers: Evidence from the southern Rocky Mountain volcanic field. Geosphere 3, 42–70 (2007).

    Article  Google Scholar 

  5. Bachmann, O. On the origin of crystal-poor rhyolites: Extracted from batholithic crystal mushes. J. Petrol. 45, 1565–1582 (2004).

    Article  Google Scholar 

  6. Turner, S. & Costa, F. Measuring timescales of magmatic evolution. Elements 3, 267–272 (2007).

    Article  Google Scholar 

  7. Druitt, T., Costa, F., Deloule, E., Dungan, M. & Scaillet, B. Decadal to monthly timescales of magma transfer and reservoir growth at a caldera volcano. Nature 482, 77–80 (2012).

    Article  Google Scholar 

  8. Halliday, A. N. et al. Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: The isotopic record in precaldera lavas of Glass Mountain. Earth Planet. Sci. Lett. 94, 274–290 (1989).

    Article  Google Scholar 

  9. Pallister, J. S., Hoblitt, R. P. & Reyes, A. G. A basaltic trigger for the 1991 eruptions of Pinatubo volcano?. Nature 356, 426–428 (1992).

    Article  Google Scholar 

  10. Burgisser, A. & Bergantz, G. W. A rapid mechanism to remobilize and homogenize highly crystalline magma bodies. Nature 471, 212–215 (2011).

    Article  Google Scholar 

  11. Stickel, J. J. & Powell, R. L. Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129–149 (2005).

    Article  Google Scholar 

  12. Philpotts, A., Shi, J. & Brustman, C. Role of plagioclase crystal chains in the differentiation of partly crystallized basaltic magma. Nature 395, 343–346 (1998).

    Article  Google Scholar 

  13. Saar, M. O., Manga, M., Cashman, K. V. & Fremouw, S. Numerical models of the onset of yield strength in crystal-melt suspensions. Earth Planet. Sci. Lett. 187, 367–379 (2001).

    Article  Google Scholar 

  14. Rampino, M. R. & Self, S. Volcanic winter and accelerated glaciation following the Toba super-eruption. Nature 359, 50–52 (1992).

    Article  Google Scholar 

  15. Jaupart, C. & Allègre, C. J. Gas content, eruption rate and instabilities of eruption regime in silicic volcanoes. Earth Planet. Sci. Lett. 102, 413–429 (1991).

    Article  Google Scholar 

  16. Gudmundsson, A. Formation and development of normal-fault calderas and the initiation of large explosive eruptions. Bull. Volcanol. 60, 160–170 (1998).

    Article  Google Scholar 

  17. Self, S., Goff, F., Gardner, J., Wright, J. V. & Kite, W. M. Explosive rhyolitic volcanism in the Jemez Mountains: Vent locations, caldera development and relation to regional structure. J. Geophys. Res. 91, 1779–1798 (1986).

    Article  Google Scholar 

  18. Geyer, A. & Marti, J. The new worldwide collapse caldera database (CCDB): A tool for studying and understanding caldera processes. J. Volcanol. Geotherm. Res. 175, 334–354 (2008).

    Article  Google Scholar 

  19. Marti, J., Geyer, A., Folch, A. & Gottsmann, J. in Studies in Volcanology: The Legacy of George Walker (eds Thordarson, T., Self, S., Larsen, G., Rowland, S. & Hoskuldsson, A.) 249–266 (Special Publication of IAVCEI, No. 2, Geological Society, 2009).

    Book  Google Scholar 

  20. Stix, J. & Kobayashi, T. Magma dynamics and collapse mechanisms during four historic caldera-forming events. J. Geophys. Res. 113, B09205 (2008).

    Article  Google Scholar 

  21. Kennedy, B. M., Jellinek, A. M. & Stix, J. Coupled caldera subsidence and stirring inferred from analogue models. Nature Geosci. 1, 385–389 (2008).

    Article  Google Scholar 

  22. Tait, S., Jaupart, C. & Vergniolle, S. Pressure, gas content and eruption periodicity of a shallow, crystallizing magma chamber. Earth Planet. Sci. Lett. 92, 107–123 (1989).

    Article  Google Scholar 

  23. Huppert, H. & Woods, A. The role of volatiles in magma chamber dynamics. Nature 420, 493–495 (2002).

    Article  Google Scholar 

  24. Druitt, T. H. & Sparks, R. S. J. On the formation of calderas during ignimbrite eruptions. Nature 310, 679–681 (1984).

    Article  Google Scholar 

  25. Caricchi, L. et al. Non-Newtonian rheology of crystal-bearing magmas and implications for magma ascent dynamics. Earth Planet. Sci. Lett. 264, 402–419 (2007).

    Article  Google Scholar 

  26. Dufek, J. & Bachmann, O. Quantum magmatism: Magmatic compositional gaps generated by melt-crystal dynamics. Geology 38, 687–690 (2010).

    Article  Google Scholar 

  27. Liu, A. J. & Nagel, S. R. Jamming is not just cool any more. Nature 396, 21–22 (1998).

    Article  Google Scholar 

  28. Cathey, H. E. & Nash, B. P. The Cougar Point tuff: Implications for thermochemical zonation and longevity of high-temperature, large-volume silicic magmas of the Miocene Yellowstone hotspot. J. Petrol. 45, 27–58 (2004).

    Article  Google Scholar 

  29. Anderson, D. Lithosphere, asthenosphere, and perisphere. Rev. Geophys. 33, 125–149 (1995).

    Article  Google Scholar 

  30. Gonnermann, H. & Manga, M. The fluid mechanics inside a volcano. Annu. Rev. Fluid Mech. 39, 321–355 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

M.L.R. is supported by a Graduate Research Fellowship from the National Science Foundation. M.M. acknowledges support from the National Science Foundation Frontiers in Earth System Dynamics and the National Aeronautics and Space Administration. We thank the Collapse Caldera Database members for maintaining the system.

Author information

Authors and Affiliations

Authors

Contributions

L.K. wrote the manuscript, prepared the figures and developed the conduit-flow model. M.L.R. carried out the finite element calculations. L.K. and M.L.R. implemented the coupling between conduit flow and chamber deformation. All authors contributed to the conceptual formulation of the model and revisions to the manuscript.

Corresponding author

Correspondence to Leif Karlstrom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1631 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karlstrom, L., Rudolph, M. & Manga, M. Caldera size modulated by the yield stress within a crystal-rich magma reservoir. Nature Geosci 5, 402–405 (2012). https://doi.org/10.1038/ngeo1453

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1453

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing