Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A bistable organic-rich atmosphere on the Neoarchaean Earth

Abstract

It has been hypothesized that, before widespread oxygenation about 2.45 billion years ago, the Earth’s atmosphere contained an organic haze similar to that on Titan. However, these theoretical predictions have not been substantiated by geological evidence. Here we use multiproxy geochemical analyses of sediments from the 2.65–2.5-billion-year-old Ghaap Group, in South Africa, to reconstruct ocean and atmospheric chemistry during this time. We find evidence for oxygen production in microbial mats and localized oxygenation of surface waters. Carbon and sulphur isotopes indicate that this oxygen production occurred under a reduced atmosphere that was periodically rich in methane, consistent with the prediction of a hydrocarbon haze. We use a photochemical model to corroborate our geochemical data. Our simulations predict transitions between two stable atmospheric states, one with organic haze and the other haze-free. The transitions are presumably governed by variations in the amount of biological methane production during the Archaean eon. We find that the isotopic signatures we observe are evident in other data sets from this period and conclude that methane was an important component of the atmosphere throughout the Archaean.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Lithologic and geochemical data for the bottom part of core GKF01, through 2.65–2.5-Gyr-old sediments of the Ghaap Group (lithologies from ref. 1).
Figure 2: Cross-plots for quadruple sulphur isotopes from the GKF01 section.
Figure 3: Photochemical model results for fractal particles.

Similar content being viewed by others

References

  1. Schroder, S., Lacassie, J. P. & Beukes, N. J. Stratigraphic and geochemical framework of the Aguoron drill cores, Transvaal Supergroup (Neoarchean-Paleoproterozoic, South Africa). South Afr. J. Geol. 109, 23–54 (2006).

    Article  Google Scholar 

  2. Wille, M. et al. Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales. Geochim. Cosmochim. Acta 71, 2417–2435 (2007).

    Article  Google Scholar 

  3. Godfrey, L. V. & Falkowski, P. G. The cycling and redox state of nitrogen in the Archaean ocean. Nature Geosci. 2, 725–729 (2009).

    Article  Google Scholar 

  4. Kendall, B. et al. Pervasive oxygenation along late Archean ocean margins. Nature Geosci. 3, 647–652 (2010).

    Article  Google Scholar 

  5. Holland, H. D. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. B 361, 903–915 (2006).

    Article  Google Scholar 

  6. Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  7. Kaufman, A. J. et al. Late Archean biospheric oxygenation and atmospheric evolution. Science 317, 1900–1903 (2007).

    Article  Google Scholar 

  8. Garvin, J., Buick, R., Anbar, A. D., Arnold, G. L. & Kaufman, A. J. Isotopic evidence for an aerobic nitrogen cycle in the latest Archean. Science 323, 1045–1048 (2009).

    Article  Google Scholar 

  9. Reinhard, C. T., Raiswell, R., Scott, C., Anbar, A. D. & Lyons, T. W. A late Archean sulfidic sea stimulated by early oxidative weathering of the continents. Science 326, 713–716 (2009).

    Article  Google Scholar 

  10. Altermann, W. & Nelson, D. R. Sedimentation rates, basin analysis and regional correlations of three Neoarchean and Paleoproterozoic sub-basins of the Kaapvaal Craton as inferred from precise U–Pb zircon ages from volcani-clastic sediments. Sedim. Geol. 120, 225–256 (1998).

    Article  Google Scholar 

  11. Miyano, T. & Beukes, N. J. Phase relations of the stilpnomelane, ferriannite, and riebekite in very low-grade metamorphosed iron formations. Geol. Soc. South Afr. Trans. 87, 111–124 (1984).

    Google Scholar 

  12. Poulton, S. W. & Raiswell, R. The low-temperature geochemical cycle of iron: From continental fluxes to marine sediment deposition. Am. J. Sci. 302, 774–805 (2002).

    Article  Google Scholar 

  13. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: A dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Article  Google Scholar 

  14. Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    Article  Google Scholar 

  15. Canfield, D. E. & Des Marais, D. J. Aerobic sulfate reduction in microbial mats. Science 251, 1471–1473 (1991).

    Article  Google Scholar 

  16. Farquhar, J., Bao, H. M. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–758 (2000).

    Article  Google Scholar 

  17. Pavlov, A. A. & Kasting, J. F. Mass-independent fractionation of sulfur isotopes in Archean sediments: Strong evidence for an anoxic Archean atmosphere. Astrobiology 2, 27–41 (2002).

    Article  Google Scholar 

  18. Ono, S., Wing, B., Johnston, D., Farquhar, J. & Rumble, D. Mass-dependent fractionation of quadruple stable sulfur isotope system as a new tracer of sulfur biogeochemical cycles. Geochim. Cosmochim. Acta 70, 2238–2252 (2006).

    Article  Google Scholar 

  19. Hinrichs, K-U. Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible?. Geochem. Geophys. Geosyst. 3, 1–10 (2002).

    Article  Google Scholar 

  20. Thomazo, C., Ader, M., Farquhar, J. & Philippot, P. Methanotrophs regulated atmospheric sulfur isotope anomalies during the Mesoarchean (Tumbiana Formation, Western Australia). Earth Planet. Sci. Lett. 279, 65–75 (2009).

    Article  Google Scholar 

  21. Hayes, J. M. in Early Life on Earth Vol. 84 (ed. Bengston, S.) 200–236 (Columbia Univ. Press, 1994).

    Google Scholar 

  22. Danielache, S. O., Eskebjerg, C., Johnson, M. S., Ueno, Y. & Yoshida, N. High-precision spectroscopy of 32S, 33S, and 34S sulfur dioxide: Ultraviolet absorption cross sections and isotope effects. J. Geophys. Res. 113, D17314 (2008).

    Article  Google Scholar 

  23. Ueno, Y. et al. Geological sulfur isotopes indicated elevated OCS in the Archean atmsophere, solving faint young sun paradox. Proc. Natl Acad. Sci. USA 106, 14784–14789 (2009).

    Article  Google Scholar 

  24. Domagal-Goldman, S. D., Kasting, J. F., Johnston, D. T. & Farquhar, J. Organic haze, glaciations and multiple sulfur isotopes in the Mid-Archean Era. Earth Planet. Sci. Lett. 269, 29–40 (2008).

    Article  Google Scholar 

  25. Farquhar, J., Savarino, J., Airieau, S. & Thiemens, M. H. Observation of wavelength-sensitive mass-independent sulfur isotope effects during SO2 photolysis: Implications for the early atmosphere. J. Geophys. Res. 106, 32829–32839 (2001).

    Article  Google Scholar 

  26. Farquhar, J. et al. Isotopic evidence for Mesoarchaean anoxia and changing atmospheric sulphur chemistry. Nature 449, 706–709 (2007).

    Article  Google Scholar 

  27. Masterson, A. L., Farquhar, J. & Wing, B. A. Sulfur mass-independent fractionation patterns in the broadband UV photolysis of sulfur dioxide: Pressure and third body effects. Earth Planet. Sci. Lett. 306, 253–260 (2011).

    Article  Google Scholar 

  28. Zmolek, P. et al. Large mass independent sulfur isotope fractionations during photopolymerization of (CS2)-C-12 and (CS2)-C-13. J. Phys. Chem. A 103, 2477–2480 (1999).

    Article  Google Scholar 

  29. Domagal-Goldman, S. D. et al. Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets. Astrobiology 11, 419–441 (2011).

    Article  Google Scholar 

  30. Zahnle, K., Claire, M. & Catling, D. The loss of mass-independent fractionation in sulfur due to a Palaeoproterozoic collapse of atmospheric methane. Geobiology 4, 271–283 (2006).

    Article  Google Scholar 

  31. Halevy, I., Johnston, D. T. & Schrag, D. P. Explaining the structure of the Archean mass-independent sulfur isotope record. Science 329, 204–207 (2010).

    Article  Google Scholar 

  32. Pavlov, A. A., Kasting, J. F. & Brown, L. L. UV-shielding of NH3 and O2 by organic hazes in the Archean atmosphere. J. Geophys. Res. 106, 1–23 (2001).

    Article  Google Scholar 

  33. Wolf, E. T. & Toon, O. B. Fractal organic hazes provided an ultraviolet shield for early Earth. Science 328, 1266–1268 (2010).

    Article  Google Scholar 

  34. Haqq-Misra, J. D., Domagal-Goldman, S. D., Kasting, P. J. & Kasting, J. F. A revised, hazy methane greenhouse for the Archean Earth. Astrobiology 8, 1127–1137 (2008).

    Article  Google Scholar 

  35. Ono, S. H., Kaufman, A. J., Farquhar, J., Sumner, D. Y. & Beukes, N. J. Lithofacies control on multiple-sulfur isotope records and Neoarchean sulfur cycles. Precambrian Res. 169, 58–67 (2009).

    Article  Google Scholar 

  36. Fischer, W. W. et al. Isotopic constraints on the Late Archean carbon cycle from the Transvaal Supergroup along the western margin of the Kaapvaal Craton, South Africa. Precamb. Res. 169, 15–27 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Kirschvink, J. Grotzinger, A. Knoll and the Agouron Institute for organizing and financially supporting the Agouron drilling project. We also thank M. Thiemens for constructive comments on the manuscript. This study was financially supported by the NASA Exobiology Program and NASA Astrobiology Institute (A.L.Z. and J.F.) and a Natural Environment Research Council Fellowship (to A.L.Z.). M.W.C and S.D.D-G. would like to acknowledge support from the NASA Astrobiology Institute Virtual Planetary Laboratory and the NASA Postdoctoral Program.

Author information

Authors and Affiliations

Authors

Contributions

A.L.Z. led the study and carried out the sulphur-isotope analyses in the lab of J.F., M.W.C. and S.D.D-G. developed and ran the atmospheric models, S.W.P. collected the samples and carried out the Fe-speciation analyses. All authors contributed to the data interpretation and manuscript preparation.

Corresponding author

Correspondence to Aubrey L. Zerkle.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1568 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zerkle, A., Claire, M., Domagal-Goldman, S. et al. A bistable organic-rich atmosphere on the Neoarchaean Earth. Nature Geosci 5, 359–363 (2012). https://doi.org/10.1038/ngeo1425

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1425

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology