Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes

Abstract

Seismic tomographic images indicate that subducted lithosphere is transported into the deep mantle1. Petrologic modelling shows that water contained in subducted slabs can be carried to depths of at least 200 km (ref. 2); however, whether the hydrated slab signature is preserved at greater depths depends on diffusion rates. Experimental studies give conflicting results on the question of hydrogen preservation. On a small scale, hydrogen equilibration with ambient mantle should be rapid3,4, implying that the slab hydrogen signature may not be preserved in the deep mantle5. However, on large scales the time required for diffusive equilibration is longer and hydrogen anomalies may persist6,7. Here we present hydrogen and boron data from submarine volcanic glasses erupted in the Manus back-arc basin, southwestern Pacific Ocean. We find that samples with low hydrogen-isotope values also exhibit the geochemical signature of dehydrated, subducted lithosphere. Combined with additional geochemical and geophysical data, we interpret this as direct evidence for the preservation of hydrogen anomalies in an ancient slab in the mantle. Our geochemical data are consistent with experimental estimates of diffusion for the upper mantle6 and transition zone7. We conclude that hydrogen anomalies can persist in the mantle without suffering complete diffusive equilibration over timescales of up to a billion years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Seismic tomography anomalies and δD variations in the Manus Basin.
Figure 2: Geochemistry of Manus Basin glasses.
Figure 3: Modelled diffusion profiles for H2O and δD as a function of distance and time.

Similar content being viewed by others

References

  1. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from global tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  2. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  Google Scholar 

  3. Mackwell, S. J. & Kohlstedt, D. L. Diffusion of hydrogen in olivine—implications for water in the mantle. J. Geophys. Res. 95, 5079–5088 (1990).

    Article  Google Scholar 

  4. Portnyagin, M., Almeev, R., Matveev, S. & Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 272, 541–552 (2008).

    Article  Google Scholar 

  5. Workman, R. K., Hauri, E. H., Hart, S. R., Wang, J. & Blusztajn, J. Volatile and trace elements in basaltic glasses from Samoa: Implications for water distribution in the mantle. Earth Planet. Sci. Lett. 241, 932–951 (2007).

    Article  Google Scholar 

  6. Demouchy, S. & Mackwell, S. Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine. Phys. Chem. Minerals 33, 347–355 (2006).

    Article  Google Scholar 

  7. Hae, R., Ohtani, E., Kubo, T., Koyama, T. & Utada, H. Hydrogen diffusivity in wadsleyite and water distribution in the mantle transition zone. Earth Planet. Sci. Lett. 243, 141–148 (2006).

    Article  Google Scholar 

  8. Beier, C., Turner, S. P., Sinton, J. M. & Gill, J. B. Influence of subducted components on back-arc melting dynamics in the Manus Basin. Geochem. Geophys. Geosyst. 11, Q0AC03 (2010).

    Google Scholar 

  9. Macpherson, C. G., Hilton, D. R., Mattey, D. P. & Sinton, J. M. Evidence for an 18O-depleted mantle plume from contrasting 18O/16O ratios of back-arc lavas from the Manus Basin and Mariana Trough. Earth Planet. Sci. Lett. 176, 171–183 (2000).

    Article  Google Scholar 

  10. Macpherson, C. G., Hilton, D. R., Sinton, J. M., Poreda, R. J. & Craig, H. High 3He/4He ratios in the Manus backarc Basin: Implications for mantle mixing and the origin of plumes in the western Pacific Ocean. Geology 26, 1007–1010 (1998).

    Article  Google Scholar 

  11. Shaw, A. M., Hilton, D. R., Macpherson, C. G. & Sinton, J. M. Nucleogenic neon in high 3He/4He lavas from the Manus back-arc basin: A new perspective on He–Ne decoupling. Earth Planet. Sci. Lett. 194, 53–66 (2001).

    Article  Google Scholar 

  12. Shaw, A. M., Hilton, D. R., Macpherson, C. G. & Sinton, J. M. The CO2–He–Ar–H2O systematics of the Manus back-arc basin: Resolving source composition from degassing and contamination effects. Geochim. Cosmochim. Acta 68, 1837–1856 (2004).

    Article  Google Scholar 

  13. Sinton, J. M., Ford, L. L., Chappell, B. & McCulloch, M. T. Magma genesis and mantle heterogeneity in the Manus back-arc basin, Papua New Guinea. J. Petrol. 44, 159–195 (2003).

    Article  Google Scholar 

  14. Dixon, J. E., Clague, D. A., Wallace, P. & Poreda, R. Volatiles in alkalic basalts from the North Arch volcanic field, Hawaii: Extensive degassing of deep submarine-erupted alkalic series lavas. J. Petrol. 38, 911–939 (1997).

    Article  Google Scholar 

  15. Poreda, R., Schilling, J. G. & Craig, H. Helium and hydrogen isotopes in ocean-ridge basalts north and south of Iceland. Earth Planet. Sci. Lett. 78, 1–17 (1986).

    Article  Google Scholar 

  16. Dixon, J. E., Leist, L., Langmuir, C. & Schilling, J-G. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt. Nature 420, 385–389 (2002).

    Article  Google Scholar 

  17. Jambon, A. & Zimmermann, J. L. Water in oceanic basalts—evidence for dehydration of recycled crust. Earth Planet. Sci. Lett. 101, 323–331 (1990).

    Article  Google Scholar 

  18. Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana arc melt inclusions: Implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145 (2008).

    Article  Google Scholar 

  19. Poreda, R. Helium-3 and deuterium in back-arc basalts; Lau Basin and the Mariana Trough. Earth Planet. Sci. Lett. 73, 244–254 (1985).

    Article  Google Scholar 

  20. Kent, A. J. R., Norman, M. D., Hutcheon, I. D. & Stolper, E. M. Assimilation of seawater-derived components in an oceanic volcano: Evidence from matrix glasses and glass inclusions from Loihi seamount, Hawaii. Chem. Geol. 156, 299–319 (1999).

    Article  Google Scholar 

  21. Newman, S., Epstein, S. & Stolper, E. Water, carbon-dioxide, and hydrogen isotopes in glasses from the Ca 1340 A.D. eruption of the Mono Craters, California—constraints on degassing phenomena and initial volatile content. J. Volcanol. Geotherm. Res. 35, 75–96 (1988).

    Article  Google Scholar 

  22. Hauri, E. H. et al. Matrix effects in hydrogen isotope analysis of silicate glasses by SIMS. Chem. Geol. 235, 352–365 (2006).

    Article  Google Scholar 

  23. Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: Isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).

    Article  Google Scholar 

  24. Marschall, H. R., Altherr, R. & Rupke, L. Squeezing out the slab—modelling the release of Li, Be and B during progressive high-pressure metamorphism. Chem. Geol. 239, 323–335 (2007).

    Article  Google Scholar 

  25. Su, Y. & Langmuir, C. H. Global MORB chemistry compilation at the segment scale; available at http://www.petdb.org/.

  26. Hofmann, A. W. in The Mantle and Core Vol. 2 (ed. Carlson, R. W.) 61–101 (Treatises on Geochemistry, Elsevier, 2005).

    Google Scholar 

  27. Hall, R. & Spakman, W. Subducted slabs beneath the eastern Indonesia-Tonga region: Insights from tomography. Earth Planet. Sci. Lett. 201, 321–336 (2002).

    Article  Google Scholar 

  28. Parman, S. W., Kurz, M. D., Hart, S. R. & Grove, T. L. Helium solubility in olivine and implications for high He-3/He-4 in ocean island basalts. Nature 437, 1140–1143 (2005).

    Article  Google Scholar 

  29. Jackson, M. G., Kurz, M. D., Hart, S. R. & Workman, R. K. New Samoan lavas from Ofu Island reveal a hemispherically heterogeneous high He-3/He-4 mantle. Earth Planet. Sci. Lett. 264, 360–374 (2007).

    Article  Google Scholar 

  30. Bercovici, D. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett. 205, 107–121 (2003).

    Article  Google Scholar 

  31. Marty, B., Sano, Y. & France-Lanord, C. Water-saturated oceanic lavas from the Manus Basin: Volatile behaviour during assimilation-fractional crystallisation-degassing (AFCD). J. Volcanol. Geotherm. Res. 108, 1–10 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank A. Gurenko (Woods Hole Oceanographic Institution) and J. Wang (Carnegie Institution of Washington) for assistance with the ion-probe measurements. Financial support was provided by the National Science Foundation (grant EAR-0646694) and the Woods Hole Oceanographic Institution Deep Ocean Exploration Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.S. provided the samples, A.S. and E.H. collected the geochemical data, M.B. and A.S. carried out the diffusion calculations, all authors contributed to the interpretation of the data and A.S. took the lead in preparing the manuscript with input from the other authors.

Corresponding author

Correspondence to A. M. Shaw.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 224 kb)

Supplementary Information

Supplementary Information (XLSX 12 kb)

Supplementary Information

Supplementary Information (XLSX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shaw, A., Hauri, E., Behn, M. et al. Long-term preservation of slab signatures in the mantle inferred from hydrogen isotopes. Nature Geosci 5, 224–228 (2012). https://doi.org/10.1038/ngeo1406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing