Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation

Abstract

During the last glacial termination, the solubility of gases in the ocean decreased as ocean temperatures rose. However, marine sediments have not unanimously recorded ocean deoxygenation throughout this time. Some records show increasing oxygenation since the Last Glacial Maximum, particularly in the deep sea, while many document abrupt oxygenation changes, often associated with apparent changes in the formation rate of North Atlantic Deep Water. Here we present a global compilation of marine sediment proxy records that reveals remarkable coherency between regional oxygenation changes throughout deglaciation. The upper ocean generally became less oxygenated, but this general trend included pauses and even reversals, reflecting changes in nutrient supply, respiration rates and ventilation. The most pronounced deoxygenation episode in the upper ocean occurred midway through the deglaciation, associated with a reinvigoration of North Atlantic Deep Water formation. At this time, the upper Indo-Pacific Ocean was less oxygenated than today. Meanwhile, the bulk of the deep ocean became more oxygenated over the deglaciation, reflecting a transfer of respired carbon to the atmosphere. The observed divergence from a simple solubility control emphasizes the degree to which oxygen consumption patterns can be altered by changes in ocean circulation and marine ecosystems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Records of changing climate and atmospheric greenhouse gas concentrations across the last glacial termination.
Figure 2: Qualitative changes in oxygenation proxies between the Last Glacial Maximum (LGM) and the Early Holocene (EH).
Figure 3: Quantitative changes in oxygenation proxies between intermediate climate intervals spanning the LGM to Early Holocene.
Figure 4: Qualitative changes in oxygenation proxies between the Bølling–Ållerød/Antarctic Cold Reversal (BA/ACR) and the Early Holocene (EH).
Figure 5: Schematic illustration of relationships between oxygen, nutrients and respired carbon.

Similar content being viewed by others

References

  1. Keeling, R. F. & Garcia, H. E. The change in oceanic O2 inventory associated with recent global warming. Proc. Natl Acad. Sci. 99, 7848–7853 (2002).

    Article  Google Scholar 

  2. Gnanadesikan, A., Russell, J. L. & Zeng, F. How does ocean ventilation change under global warming? Ocean Sci. 3, 43–53 (2007).

    Article  Google Scholar 

  3. Deutsch, C., Brix, H., Ito, T., Frenzel, H. & Thompson, L. Climate-forced variability of ocean hypoxia. Science 333, 336–339 (2011).

    Article  Google Scholar 

  4. Emerson, S., Watanabe, Y. W., Ono, T. & Mecking, S. Temporal trends in apparent oxygen utilization in the upper pycnocline of the North Pacific: 1980–2000. J. Oceanogr. 60, 139–147 (2004).

    Article  Google Scholar 

  5. Ito, T. & Deutsch, C. A conceptual model for the temporal spectrum of oceanic oxygen variability. Geophys. Res. Lett. 37, L03601 (2010).

    Article  Google Scholar 

  6. Margo Project Members, Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci. 2, 1–6 (2009).

    Google Scholar 

  7. Muratli, J. M., Chase, Z., Mix, A. C. & McManus, J. Increased glacial-age ventilation of the Chilean margin by Antarctic Intermediate Water. Nature Geosci. 3, 23–26 (2010).

    Google Scholar 

  8. Galbraith, E. D., Kienast, M., Pedersen, T. F. & Calvert, S. E. Glacial–interglacial modulation of the marine nitrogen cycle by high-latitude O2 supply to the global thermocline. Paleoceanography 19, PA4007 (2004).

    Article  Google Scholar 

  9. Altabet, M. A., Francois, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).

    Article  Google Scholar 

  10. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & Murray, J. W. Large changes in oceanic nutrient inventories from glacial to interglacial periods. Nature 376, 755–758 (1995).

    Article  Google Scholar 

  11. Ganeshram, R. S., Pedersen, T. F., Calvert, S. E. & François, R. Reduced nitrogen fixation in the glacial ocean inferred from changes in marine nitrogen and phosphorus inventories. Nature 415, 156–159 (2002).

    Article  Google Scholar 

  12. Sigman, D. M. & Boyle, E. A. Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407, 859–869 (2000).

    Article  Google Scholar 

  13. Galbraith, E. D. et al. Carbon dioxide release from the North Pacific abyss during the last deglaciation. Nature 449, 890–894 (2007).

    Article  Google Scholar 

  14. Jaccard, S. L. et al. Subarctic Pacific evidence for a glacial deepening of the oceanic respired carbon pool. Earth Planet. Sci. Lett. 277, 156–165 (2009).

    Article  Google Scholar 

  15. Bradtmiller, L. I., Anderson, R. F., Sachs, J. P. & Fleisher, M. Q. A deeper respired carbon pool in the glacial equatorial Pacific Ocean. Earth Planet. Sci. Lett. 299, 417–425 (2010).

    Article  Google Scholar 

  16. Altabet, M. A. et al. The nitrogen biogeochemistry of sinking particles from the margin of the Eastern North Pacific. Deep-Sea Res. I 46, 655–679 (1999).

    Article  Google Scholar 

  17. Baas, J. H., Schönfeld, J. & Zahn, R. Mid-depth oxygen drawdown during Heinrich events: Evidence from benthic foraminiferal community structure, trace-fossil tiering, and benthic δ13C at the Portuguese Margin. Mar. Geol. 152, 25–55 (1998).

    Article  Google Scholar 

  18. Crusius, J., Pedersen, T. F., Kienast, S. S., Keigwin, L. & Labeyrie, L. D. Influence of northwest Pacific productivity on North Pacific Intermediate Water oxygen concentrations during the Bølling–Ållerød interval (14.7–12.9 kyr). Geology 32, 633–636 (2004).

    Article  Google Scholar 

  19. Cannariato, K. G. & Kennett, J. P. California margin oxygen-minimum zone during the past 60 k.y. Geology 27, 975–978 (1999).

    Article  Google Scholar 

  20. Ito, T. & Follows, M. J. Preformed phosphate, soft tissue pump and atmospheric CO2 . J. Mar. Res. 63, 813–839 (2005).

    Article  Google Scholar 

  21. Martin, P., Archer, D. & Lea, D. W. Role of deep sea temperature in the carbon cycle during the last glacial. Paleoceanography 20, PA2015 (2005).

    Article  Google Scholar 

  22. Adkins, J. F., McIntyre, K. & Schrag, D. P. The salinity, temperature, and δ18O of the Glacial Deep Ocean. Science 298, 1769–1773 (2002).

    Article  Google Scholar 

  23. Skinner, L. C., Fallon, S., Waelbroeck, C., Michel, E. & Barker, S. Ventilation of the Deep Southern Ocean and Deglacial CO2 Rise. Science 328, 1147–1152 (2010).

    Article  Google Scholar 

  24. Matsumoto, K. Biology-mediated temperature control on atmospheric pCO2 and ocean biogeochemistry. Geophys. Res. Lett. 34, L20605 (2007).

    Article  Google Scholar 

  25. Keigwin, L. D. & Lehman, S. J. Deep circulation change linked to HEINRICH event 1 and Younger Dryas in a middepth North Atlantic core. Paleoceanography 9, 185–194 (1994).

    Article  Google Scholar 

  26. Ivanochko, T. S. et al. Variations in tropical convection as an amplifier of global climate change at the millenial scale. Earth Planet. Sci. Lett. 235, 302–314 (2005).

    Article  Google Scholar 

  27. Schulz, H., von Rad, U. & Erlenkeuser, H. Correlation between Arabian Sea and Greenland climate oscillations of the past 110,000 years. Nature 393, 54–57 (1998).

    Article  Google Scholar 

  28. Altabet, M. A., François, R., Murray, D. W. & Prell, W. L. Climate-related variations in denitrification in the Arabian Sea from sediment 15N/14N ratios. Nature 373, 506–509 (1995).

    Article  Google Scholar 

  29. Schmittner, A., Galbraith, E. D., Hostetler, S. W., Pedersen, T. F. & Zhang, R. Large fluctuations of dissolved oxygen in the Indian and Pacific oceans during Dansgaard–Oeschger oscillations caused by variations of North Atlantic Deep Water subduction. Paleoceanography 22, PA3207 (2007).

    Article  Google Scholar 

  30. Kienast, M. et al. Eastern Pacific cooling and Atlantic overturning circulation during the last deglaciation. Nature 443, 846–849 (2006).

    Article  Google Scholar 

  31. Hayes, C. T., Anderson, R. F. & Fleisher, M. Q. Opal accumulation rates in the equatorial Pacific and mechanisms of deglaciation. Paleoceanography 26, PA1207 (2011).

    Article  Google Scholar 

  32. Anderson, R. F. et al. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2 . Science 323, 1143–1448 (2009).

    Google Scholar 

  33. Brunelle, B. G. et al. Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quat. Sci. Rev. 29, 2579–2590 (2010).

    Article  Google Scholar 

  34. Ortiz, J. D. et al. Enhanced marine productivity off western North America during warm climate intervals of the past 52 k.y. Geology 32, 521–524 (2004).

    Article  Google Scholar 

  35. Robinson, R. S., Martinez, P., Pena, L. D. & Cacho, I. Nitrogen isotopic evidence for deglacial changes in nutrient supply in the eastern equatorial Pacific. Paleoceanography 24, PA4213 (2009).

    Article  Google Scholar 

  36. Zheng, Y., van Geen, A., Anderson, R. F., Gardner, J. V. & Dean, W. E. Intensification of the northeast Pacific oxygen minimum zone during the Bölling–Alleröd warm period. Paleoceanography 15, 528–536 (2000).

    Article  Google Scholar 

  37. Barker, S., Knorr, G., Vautravers, M. J., Diz, P. & Skinner, L. C. Extreme deepening of the Atlantic overturning circulation during deglaciation. Nature Geosci. 3, 567–571 (2010).

    Article  Google Scholar 

  38. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Article  Google Scholar 

  39. Ravishankara, A. R., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).

    Article  Google Scholar 

  40. Suthhof, A., Ittekkot, V. & Gaye-Haake, B. Millennial-scale oscillation of denitrification intensity in the Arabian Sea during the late Quaternary and its potential influence on atmospheric N2O and global climate. Glob. Biogeochem. Cycles 15, 637–649 (2001).

    Article  Google Scholar 

  41. Thunell, R. C. & Kepple, A. B. Glacial-Holocene δ15 N record from the Gulf of Tehuantepec, Mexico: Implications for denitrification in the eastern equatorial Pacific and changes in atmospheric N2O. Glob. Biogeochem. Cycles 18, GB1001 (2004).

    Google Scholar 

  42. Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    Article  Google Scholar 

  43. Marinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L. & Slater, R. D. How does ocean biology affect atmospheric pCO2? Theory and models. J. Geophys. Res. 113, C07032 (2008).

    Article  Google Scholar 

  44. Jaccard, S. L. et al. Glacial/interglacial changes in subarctic North Pacific stratification. Science 308, 1003–1006 (2005).

    Article  Google Scholar 

  45. Marchitto, T. M., Lynch-Stieglitz, J. & Hemming, S. R. Deep Pacific CaCO3 compensation and glacial–interglacial atmospheric CO2 . Earth Planet. Sci. Lett. 231, 317–336 (2005).

    Article  Google Scholar 

  46. Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article  Google Scholar 

  47. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000-800,000 year before present. Nature 453, 379–382 (2008).

    Article  Google Scholar 

  48. Schilt, A. et al. Atmospheric nitrous oxide during the past 140,000 years. Earth Planet. Sci. Lett. 29, 182–192 (2010).

    Google Scholar 

  49. NGICP Project Members, High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature 431, 147–151 (2004).

    Article  Google Scholar 

  50. EPICA Project Members, Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

E.D.G. thanks NSERC and CIFAR for financial support. D. Bianchi and N. Gruber commented on an early version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

S.L.J. and E.D.G. jointly initiated the research project, and both contributed to the interpretation of the results and writing of the manuscript. S.L.J. compiled available data from the literature. E.D.G. performed the data analysis and created the figures.

Corresponding authors

Correspondence to Samuel L. Jaccard or Eric D. Galbraith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 614 kb)

Supplementary Information

Supplementary Information (XLS 81 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jaccard, S., Galbraith, E. Large climate-driven changes of oceanic oxygen concentrations during the last deglaciation. Nature Geosci 5, 151–156 (2012). https://doi.org/10.1038/ngeo1352

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1352

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing