Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Biological processes on glacier and ice sheet surfaces

Abstract

Glaciers and ice sheets are melting in response to climate warming. Whereas the physical behaviour of glaciers has been studied intensively, the biological processes associated with glaciers and ice sheets have received less attention. Nevertheless, field observations and laboratory experiments suggest that biological processes that occur on the surface of glaciers and ice sheets — collectively termed supraglacial environments — can affect the physical behaviour of glaciers by changing surface reflectivity. Furthermore, supraglacial cyanobacteria and algae capture carbon dioxide from the atmosphere and convert it into organic matter. Supraglacial microbes break down this material, together with organic matter transported from further afield, and generate carbon dioxide that is released back into the atmosphere. The balance between these two processes will determine whether a glacier is a net sink or source of carbon dioxide. In general, ice sheet interiors seem to function as sinks, whereas ice sheet edges and small glaciers act as a source. Meltwaters flush microbially modified organic matter and pollutants out of the glacier, with potential consequences for downstream ecosystems. We conclude that microbes living on glaciers and ice sheets are an integral part of both the glacial environment and the Earth's ecosystem.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Deposition and aggregation of wind-borne debris on the glacier surface.
Figure 2: Organic carbon (OC) sources and carbon balance in the supraglacial environment.

Similar content being viewed by others

References

  1. Benn, D. I. & Evans, D. J. A. Glaciers and glaciation (Arnold, London, 1998).

    Google Scholar 

  2. Hanna, E. et al. Runoff and mass balance of the Greenland ice sheet: 1958–2003 J. Geophys. Res. 110, D13108 (2005).

    Article  Google Scholar 

  3. Anesio, A. M., Hodson, A. J., Fritz, A., Psenner, R. & Sattler, B. High microbial activity on glaciers: importance to the global carbon cycle. Glob. Change Biol. 15, 955–960 (2009).

    Article  Google Scholar 

  4. Hodson, A. et al. The cryoconite ecosystem on the Greenland ice sheet. Ann. Glaciol. 51, 123–129 (2010).

    Article  Google Scholar 

  5. Lenaerts, J. T. M., van den Broeke, M. R., van de Berg, W. J., van Meijgaard, E. & Kuipers Munneke, P. A new, high-resolution surface mass balance map of Antarctica (1979–2010) based on regional atmospheric climate modeling. Geophys. Res. Lett. 39, L04501 (2012).

    Article  Google Scholar 

  6. Price, P. B., Rohde, R. A. & Bay, R. C. Fluxes of microbes, organic aerosols, dust, sea-salt Na ions, non-sea-salt Ca ions, and methanesulfonate onto Greenland and Antarctic ice. Biogeosciences 6, 479–486 (2009).

    Article  Google Scholar 

  7. Remias, D., Holzinger, A. & Lütz, C. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48, 302–312 (2009).

    Article  Google Scholar 

  8. Langford, H., Hodson, A., Banwart, S. & Bøggild, C. The microstructure and biogeochemistry of Arctic cryoconite granules. Ann. Glaciol. 51, 87–94 (2010).

    Article  Google Scholar 

  9. Takeuchi, N. Temporal and spatial variations in spectral reflectance and characteristics of surface dust on Gulkana Glacier, Alaska Range. J. Glaciol. 55, 701–709 (2009).

    Article  Google Scholar 

  10. Hodson, A. et al. The structure, biological activity and biogeochemistry of cryoconite aggregates upon an Arctic valley glacier: Longyearbreen, Svalbard. J. Glaciol. 56, 349–361 (2010).

    Article  Google Scholar 

  11. Stibal, M., Šabacká, M. & Kaštovská, K. Microbial communities on glacier surfaces in Svalbard: Impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 52, 644–654 (2006).

    Article  Google Scholar 

  12. Bøggild, C. E., Brandt, R. E., Brown, K. J. & Warren, S. G. The ablation zone in northeast Greenland: ice types, albedos and impurities. J. Glaciol. 56, 101–113 (2010).

    Article  Google Scholar 

  13. Wientjes, I. G. M., van de Wal, R. S. W., Reichart, G. J., Sluijs, A. & Oerlemans, J. Dust from the dark region in the western ablation zone of the Greenland ice sheet. Cryosphere 5, 589–601 (2011).

    Article  Google Scholar 

  14. Box, J. E. et al. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Cryosphere 6, 821–839 (2012).

    Article  Google Scholar 

  15. Takeuchi, N. & Li, Z. Characteristics of surface dust on Ürümqi Glacier No. 1 in the Tien Shan Mountains, China. Arct. Antarct. Alp. Res. 40, 744–750 (2008).

    Article  Google Scholar 

  16. Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algae community on the surface of Greenland Ice Sheet. ISME J. http://dx.doi.org/10.1038/ismej.2012.107 (2012).

  17. Remias, D. et al. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79, 638–648 (2012).

    Article  Google Scholar 

  18. Foreman, C. M., Sattler, B., Mikucki, J. A., Porazinska, D. L. & Priscu, J. C. Metabolic activity and diversity of cryoconites in the Taylor Valley, Antarctica. J. Geophys. Res. 112, G04S32 (2007).

    Article  Google Scholar 

  19. Hodson A. et al. A glacier respires: quantifying the distribution and respiration CO2 flux of cryoconite across an entire Arctic supraglacial ecosystem. J. Geophys. Res. 112, G04S36 (2007).

    Article  Google Scholar 

  20. Stibal, M., Tranter, M., Benning, L. G. & Řehák, J. Microbial primary production on an Arctic glacier is insignificant in comparison with allochthonous organic carbon input. Environ. Microbiol. 10, 2172–2178 (2008).

    Article  Google Scholar 

  21. Anesio, A. M. et al. Carbon fluxes through bacterial communities on glacier surfaces. Ann. Glaciol. 51, 32–40 (2010).

    Article  Google Scholar 

  22. Stibal, M. et al. Environmental controls on microbial abundance and activity on the Greenland ice sheet: a multivariate analysis approach. Microb. Ecol. 63, 74–84 (2012).

    Article  Google Scholar 

  23. Edwards, A. et al. Possible interactions between bacterial diversity, microbial activity and supraglacial hydrology of cryoconite holes in Svalbard. ISME J. 5, 150–160 (2011).

    Article  Google Scholar 

  24. Bagshaw, E. A., Tranter, M., Wadham, J. L., Fountain, A. G. & Mowlem, M. High-resolution monitoring reveals dissolved oxygen dynamics in an Antarctic cryoconite hole. Hydrol. Process. 25, 2868–2877 (2011).

    Article  Google Scholar 

  25. Säwström, C., Laybourn-Parry, J., Granéli, W. & Anesio, A. M. Heterotrophic bacterial and viral dynamics in Arctic freshwaters: results from a field study and nutrient-temperature manipulation experiments. Polar Biol. 30, 1407–1415 (2007).

    Article  Google Scholar 

  26. Telling, J. et al. Microbial nitrogen cycling on the Greenland Ice Sheet. Biogeosciences 9, 2431–2442 (2012).

    Article  Google Scholar 

  27. Segawa, T. & Takeuchi, N. Cyanobacterial communities on Qiyi glacier, Qilian Shan, China. Ann. Glaciol. 51, 135–144 (2010).

    Article  Google Scholar 

  28. Uetake, J., Naganuma, T., Hebsgaard, M. B., Kanda, H. & Kohshima, S. Communities of algae and cyanobacteria on glaciers in west Greenland. Polar Sci. 4, 71–80 (2010).

    Article  Google Scholar 

  29. Telling, J. et al. Controls on the autochthonous production and respiration of organic matter in cryoconite holes on High Arctic glaciers. J. Geophys. Res. 117, G01017 (2012).

    Article  Google Scholar 

  30. Tranter, M. et al. Extreme hydrochemical conditions in natural microcosms entombed within Antarctic ice. Hydrol. Process. 18, 379–387 (2004).

    Article  Google Scholar 

  31. Cook, J. et al. The mass–area relationship within cryoconite holes and its implications for primary production. Ann. Glaciol. 51, 106–110 (2010).

    Article  Google Scholar 

  32. Takeuchi, N., Nishiyama, H. & Li, Z. Structure and formation process of cryoconite granules on Ürümqi glacier No. 1, Tien Shan, China. Ann. Glaciol. 51, 9–14 (2010).

    Article  Google Scholar 

  33. Xiang, S.-R., Shang T.-C., Chen, Y., Jing, Z.-F. & Yao, T. Dominant bacteria and biomass in the Kuytun 51 Glacier. Appl. Environ. Microbiol. 75, 7287–7290 (2009).

    Article  Google Scholar 

  34. Cameron, K. A., Hodson, A. J. & Osborn, A. M. Structure and diversity of bacterial, eukaryotic and archaeal communities in glacial cryoconite holes from the Arctic and the Antarctic. FEMS Microbiol. Ecol. http://dx.doi.org/10.1111/j.1574-6941.2011.01277.x (2011).

  35. Bhatia, M. P., Das, S. B., Longnecker, K., Charette, M. A. & Kujawinski, E. B. Molecular characterization of dissolved organic matter associated with the Greenland ice sheet. Geochim. Cosmochim. Acta 74, 3768–3784 (2010).

    Article  Google Scholar 

  36. Xu, Y., Simpson, A. J., Eyles, N. & Simpson, M. J. Sources and molecular composition of cryoconite organic matter from the Athabasca Glacier, Canadian Rocky Mountains. Org. Geochem. 41, 177–186 (2010).

    Article  Google Scholar 

  37. Grannas, A. M., Hockaday, W. C., Hatcher, P. G., Thompson, L. G. & Mosley-Thompson, E. New revelations on the nature of organic matter in ice cores. J. Geophys. Res. 111, D04304 (2006).

    Article  Google Scholar 

  38. Margesin, R., Zacke, G. & Schinner, F. Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct. Antarct. Alp. Res. 34, 88–93 (2002).

    Article  Google Scholar 

  39. Bogdal, C. et al. Blast from the past: Melting glaciers as a relevant source for persistent organic pollutants. Environ. Sci. Technol. 43, 8173–8177 (2009).

    Article  Google Scholar 

  40. Stibal, M. et al. Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet. Appl. Environ. Microbiol. 78, 5070–5076 (2012).

    Article  Google Scholar 

  41. Telling, J. et al. Measuring rates of gross photosynthesis and net community production in cryoconite holes: a comparison of field methods. Ann. Glaciol. 51 (56), 135–144 (2010).

    Article  Google Scholar 

  42. Antony, R., Mahalinganathan, K., Thamban, M. & Nair S. Organic carbon in Antarctic snow: spatial trends and possible sources. Environ. Sci. Technol. 45, 9944–9950 (2011).

    Article  Google Scholar 

  43. Stubbins, A. et al. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nat. Geosci. 5, 198–201 (2012).

    Article  Google Scholar 

  44. Hodson, A. Biogeochemistry of snowmelt in an Antarctic glacial ecosystem. Water Resour. Res. 42, W11406 (2006).

    Article  Google Scholar 

  45. Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).

    Article  Google Scholar 

  46. Lanoil, B. et al. Bacteria beneath the West Antarctic Ice Sheet. Environ. Microbiol. 11, 609–615 (2009).

    Article  Google Scholar 

  47. Yde, J. C. et al. Basal ice microbiology at the margin of the Greenland ice sheet. Ann. Glaciol. 51, 71–79 (2010).

    Article  Google Scholar 

  48. Wadham, J. L. et al. Potential methane reserves beneath Antarctica. Nature 488, 633–637 (2012).

    Article  Google Scholar 

  49. Barker, J. D., Sharp, M. J., Fitzsimons, S. J. & Turner, R. J. Abundance and dynamics of dissolved organic carbon in glacier systems. Arct. Antarct. Alp. Res. 38, 163–172 (2006).

    Article  Google Scholar 

  50. Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

MS was supported by Danish Research Council grant FNU 10-085274. JŽ acknowledges the support from Marie-Curie ITN NSINK Project No. 215503 and a scholarship of the University of Innsbruck (2011/2/Bio22 140797).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing of the manuscript.

Corresponding author

Correspondence to Marek Stibal.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nature Geosci 5, 771–774 (2012). https://doi.org/10.1038/ngeo1611

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1611

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology