Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation

Abstract

The planet Mercury rotates three times about its spin axis for every two orbits about the Sun1,2, in a 3/2 spin–orbit resonance. This unique state has been explained by an initial rapid prograde rotation, which was then decelerated by tidal torques to the present resonance3,4,5,6. When friction at the core–mantle boundary is accounted for, capture into the 3/2 resonance occurs with a probability of only 26%, whereas the most likely outcome is capture into one of the higher-order resonances7. Here we use a numerical model of Mercury’s rotational evolution to investigate the consequences of an initial retrograde rotation of Mercury. We find that in this case, the planet would be captured into synchronous rotation, with one hemisphere always facing the Sun, with a probability of 68%. Strong lateral variations in the impact cratering rate would have existed, consistent with the observed distribution of large impact basins. Escape from this highly stable resonance can be initiated by the momentum imparted by large, basin-forming impact events8,9,10, and subsequent capture into the 3/2 resonance is likely. During synchronous rotation, substantial quantities of volatile deposits would have accumulated on the hemisphere facing away from the Sun, potentially explaining the existence of sublimation hollows on Mercury’s surface11.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Capture into synchronous rotation from initial retrograde rotation.
Figure 2: Impact crater size and impact velocity required to unlock Mercury from synchronous rotation.
Figure 3: Predicted cratering rates and observed impact basins.

Similar content being viewed by others

References

  1. Pettengill, G. H. & Dyce, R. B. A radar determination of the rotation of the planet Mercury. Nature 206, 1240 (1965).

    Article  Google Scholar 

  2. Colombo, G. Rotational period of the planet Mercury. Nature 208, 575 (1965).

    Article  Google Scholar 

  3. Colombo, G. & Shapiro, I. The rotation of the planet Mercury. Astrophys. J. 145, 296–307 (1966).

    Article  Google Scholar 

  4. Goldreich, P. & Peale, S. Spin–orbit coupling in the Solar System. Astron. J. 71, 425–438 (1966).

    Article  Google Scholar 

  5. Counselman, C. C. III & Shapiro, I. I. Symposia Mathematica, Istituto Nazionale di Alta Matematica Vol. III, 121–169 (Academic, 1970).

    Google Scholar 

  6. Correia, A. C. M. & Laskar, J. Mercury’s capture into the 3/2 spin–orbit resonance as a result of its chaotic dynamics. Nature 429, 848–850 (2004).

    Article  Google Scholar 

  7. Correia, A. C. M. & Laskar, J. Mercury’s capture into the 3/2 spin–orbit resonance including the effect of core–mantle friction. Icarus 201, 1–11 (2009).

    Article  Google Scholar 

  8. Melosh, H. J. Large impact craters and the Moon’s orientation. Earth Planet. Sci. Lett. 26, 353–360 (1975).

    Article  Google Scholar 

  9. Lissauer, J. J. Can cometary bombardment disrupt synchronous rotation of planetary satellites? J. Geophys. Res. 90, 11289–11293 (1985).

    Article  Google Scholar 

  10. Wieczorek, M. A. & Le Feuvre, M. Did a large impact reorient the Moon? Icarus 200, 358–366 (2009).

    Article  Google Scholar 

  11. Blewett, D. T. et al. Hollows on Mercury: MESSENGER evidence for geologically recent volatile-related activity. Science 333, 1856–1859 (2011).

    Article  Google Scholar 

  12. Margot, J. L., Peale, S. J., Jurgens, R. F., Slade, M. A. & Holin, I. V. Large longitude libration of Mercury reveals a molten core. Science 316, 710–714 (2007).

    Article  Google Scholar 

  13. Peale, S. J. & Boss, A. P. A spin–orbit constraint on the viscosity of a Mercurian liquid core. J. Geophys. Res. 82, 743–749 (1977).

    Article  Google Scholar 

  14. Laskar, J. Chaotic diffusion in the Solar System. Icarus 196, 1–15 (2008).

    Article  Google Scholar 

  15. Dones, L. & Tremaine, S. On the origin of planetary spins. Icarus 103, 67–92 (1993).

    Article  Google Scholar 

  16. Lissauer, J. J., Dones, L. & Ohtsuki, K. Origin of the Earth and Moon 101–112 (Univ. Arizona Press, 2000).

    Google Scholar 

  17. Kokubo, E. & Ida, S. Formation of terrestrial planets from protoplanets. II. Statistics of planetary spin. Astrophys. J. 671, 2082–2090 (2007).

    Article  Google Scholar 

  18. Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the Moon and a revised crater chronology of the inner Solar System. Icarus 214, 1–20 (2011).

    Article  Google Scholar 

  19. Fassett, C. et al. Caloris impact basin: Exterior geomorphology, stratigraphy, morphometry, radial sculpture, and smooth plains deposits. Icarus 285, 297–308 (2009).

    Google Scholar 

  20. Wieczorek, M. A. & Zuber, M. T. A Serenitatis origin for the Imbrium grooves and South Pole-Aitken thorium anomaly. J. Geophys. Res. 106, 27853–27864 (2001).

    Article  Google Scholar 

  21. Campbell-Brown, M. D. High resolution radiant distribution and orbits of sporadic radar meteoroids. Icarus 196, 144–163 (2008).

    Article  Google Scholar 

  22. Davies, M. E. & Batson, R. M. Surface coordinates and cartography of Mercury. J. Geophys. Res. 80, 2417–2430 (1975).

    Article  Google Scholar 

  23. Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).

    Article  Google Scholar 

  24. Bottke, W. et al. Debiassed orbital and absolute magnitude distribution of the near-Earth objects. Icarus 156, 399–433 (2002).

    Article  Google Scholar 

  25. Spudis, P. D. & Guest, J. E. in Mercury (eds Chapman, C. R., Matthews, M. S. & Vilas, F.) 118–164 (Univ. Arizona Press, 1988).

    Google Scholar 

  26. Fassett, C., Kadish, S., Head, J., Solomon, S. & Strom, R. The global population of large craters on Mercury and comparison with the Moon. Geophys. Res. Lett. 38, L10202 (2011).

    Google Scholar 

  27. Herrick, R. R., Curran, L. L. & Baer, A. T. A Mariner/MESSENGER global catalog of mercurian craters. Icarus 215, 452–454 (2011).

    Article  Google Scholar 

  28. Harmon, J. K., Perillat, P. J. & Slade, M. A. High-resolution radar imaging of Mercury’s North Pole. Icarus 149, 1–15 (2001).

    Article  Google Scholar 

  29. Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).

    Article  Google Scholar 

  30. Solomon, S. C. Mercury: The enigmatic innermost planet. Earth Planet. Sci. Lett. 216, 441–455 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the French Programme National de Planétologie, the French Centre National de la Recherche Scientifique, and from the Portuguese Fundação para a Ciência e a Tecnologia under grant PTDC/CTE-AST/098528/2008.

Author information

Authors and Affiliations

Authors

Contributions

M.A.W. developed the scenario of unlocking synchronous rotation by impacts and analysed the distribution of impact basins. A.C.M.C. performed the rotational simulations. M.L.F. calculated the spatial variations in the impact cratering rate. All authors contributed to developing the conclusions and implications in the manuscript.

Corresponding author

Correspondence to Mark A. Wieczorek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2322 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wieczorek, M., Correia, A., Le Feuvre, M. et al. Mercury’s spin–orbit resonance explained by initial retrograde and subsequent synchronous rotation. Nature Geosci 5, 18–21 (2012). https://doi.org/10.1038/ngeo1350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1350

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing