Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum

Abstract

During each of the late Pleistocene glacial–interglacial transitions, atmospheric carbon dioxide concentrations rose by almost 100 ppm. The sources of this carbon are unclear, and efforts to identify them are hampered by uncertainties in the magnitude of carbon reservoirs and fluxes under glacial conditions. Here we use oxygen isotope measurements from air trapped in ice cores and ocean carbon-cycle modelling to estimate terrestrial and oceanic gross primary productivity during the Last Glacial Maximum. We find that the rate of gross terrestrial primary production during the Last Glacial Maximum was about 40±10 Pg C yr−1, half that of the pre-industrial Holocene. Despite the low levels of photosynthesis, we estimate that the late glacial terrestrial biosphere contained only 330 Pg less carbon than pre-industrial levels. We infer that the area covered by carbon-rich but unproductive biomes such as tundra and cold steppes was significantly larger during the Last Glacial Maximum, consistent with palaeoecological data. Our data also indicate the presence of an inert carbon pool of 2,300 Pg C, about 700 Pg larger than the inert carbon locked in permafrost today. We suggest that the disappearance of this carbon pool at the end of the Last Glacial Maximum may have contributed to the deglacial rise in atmospheric carbon dioxide concentrations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of observations and model results used to constrain during the LGM, global estimates of terrestrial photosynthesis, and of marine and terrestrial carbon stocks.
Figure 2: Relationship defining terrestrial photosynthesis (G P PTER) as a function of the 18O isotopic enrichment of land oxygen fluxes, or land Dole effect, D ETER.
Figure 3: Ocean and land carbon stocks inferred from carbon isotopes for the PRE and LGM.

Similar content being viewed by others

References

  1. Denman, K. L. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  2. Adams, J. M., Faure, H., Faure-Denard, L., McGlade, J. M. & Woodward, F. I. Increases in terrestrial carbon storage from the Last Glacial Maximum to the present. Nature 348, 711–714 (1990).

    Article  Google Scholar 

  3. Prentice, K. & Fung, I. The sensitivity of terrestrial carbon storage to climate change. Nature 346, 48–51 (1990).

    Article  Google Scholar 

  4. Bird, M. I., Lloyd, J. & Farquhar, G. Terrestrial carbon storage at the LGM. Nature 371, 566 (1994).

    Article  Google Scholar 

  5. François, L., Faure, H. & Probst, J-L. The global carbon cycle and its changes over glacial–interglacial cycles. Glob. Planet. Change 33, vii–viii (2002).

    Article  Google Scholar 

  6. François, L. M. et al. Carbon stocks and isotopic budgets of the terrestrial biosphere at mid-Holocene and last glacial maximum times. Chem. Geol. 159, 163–189 (1999).

    Article  Google Scholar 

  7. Friedlingstein, P., Prentice, K. C., Fung, I. Y., John, J. G. & Brasseur, G. P. Carbon-biosphere-climate interactions in the last glacial maximum climate. J. Geophys. Res. 100, 7203–7221 (1995).

    Article  Google Scholar 

  8. Pedersen, T. F., Francois, R., Francois, L., Alverson, K. & McManusin, J. in Paleoclimate, Global Change and the Future (eds Alerson, K., Bradley, R. S., & Pedersen, T. F.) 63–83 (Springer, 2003).

    Book  Google Scholar 

  9. Otto, D., Rasse, D., Kaplan, J., Warnant, P. & François, L. Biospheric carbon stocks reconstructed at the Last Glacial Maximum: Comparison between general circulation models using prescribed and computed sea surface temperatures. Glob. Planet. Change 33, 117–138 (2002).

    Article  Google Scholar 

  10. Prentice, I. C. & Harrison, S. P. Ecosystem effects of CO2 concentration: Evidence from past climates. Clim. Past 5, 297–307 (2009).

    Article  Google Scholar 

  11. Harrison, S. P. & Prentice, I. C. Climate and CO2 controls on global vegetation distribution at the last glacial maximum: Analysis based on palaeovegetation data, biome modelling and palaeoclimate simulations. Glob. Change Biol. 9, 983–1004 (2003).

    Article  Google Scholar 

  12. Friedlingstein, P., Delire, C., Müller, J. F. & Gérard, J. C. The climate induced variation of the continental biosphere: A model simulation of the last glacial maximum. Geophys. Res. Lett. 19, 897–900 (1992).

    Article  Google Scholar 

  13. Bond, W. J., Midgley, G. F. & Woodward, F. I. The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Glob. Change Biol. 9, 973–982 (2003).

    Article  Google Scholar 

  14. Zimov, S., Schuur, E. A. G. & Chapin, F. S. Permafrost and the global carbon budget. Science 312, 1612–1613 (2006).

    Article  Google Scholar 

  15. Faure, H., Walter, R. C. & Grant, D. R. The coastal oasis_ Ice age springs on emerged continental shelves. Glob. Planet. Change 33, 47–56 (2002).

    Article  Google Scholar 

  16. Kohfeld, K. E., Quere, C. L., Harrison, S. P. & Anderson, R. F. Role of marine biology in glacial–interglacial CO2 cycles. Science 308, 74–78 (2005).

    Article  Google Scholar 

  17. Tagliabue, A. et al. Quantifying the roles of ocean circulation and biogeochemistry in governing ocean carbon-13 and atmospheric carbon dioxide at the last glacial maximum. Clim. Past 5, 695–706 (2009).

    Article  Google Scholar 

  18. Toggweiler, J. R. Variation of atmospheric CO2 by ventilation of the ocean’s deepest water. Paleoceanography 14, 571–588 (1999).

    Article  Google Scholar 

  19. Brovkin, V., Ganopolski, A., Archer, D. & Rahmstorf, S. Lowering of glacial atmospheric CO2 in response to changes in oceanic circulation and marine biogeochemistry. Paleoceanography 22, PA4202 (2007).

    Article  Google Scholar 

  20. Dole, M. The relative atomic weight of oxygen in water and in air. J. Am. Chem. Soc. 57, 2731 (1935).

    Article  Google Scholar 

  21. Barkan, E. & Luz, B. High precision measurements of 17O/16O and 18O/16O of O2 and O2: Ar ratio in air. Rapid Commun. Mass Spectrom. 17, 2809–2814 (2003).

    Article  Google Scholar 

  22. Bender, M., Sowers, T. & Labeyrie, L. The Dole effect and its variations during the last 130,000 years as measured in the Vostok ice core. Glob. Biogeochem. Cycles 8, 363–376 (1994).

    Article  Google Scholar 

  23. Craig, H. & Gordon, A. Stable Isotopes in Oceanic Studies and Paleotemperatures 9–130 (Laboratory of Geology and Nuclear Science, 1965).

    Google Scholar 

  24. Gillon, J. & Yakir, D. Influence of carbonic anhydrase activity in terrestrial vegetation on the 18O content of atmospheric CO2 . Science 291, 2584–2587 (2001).

    Article  Google Scholar 

  25. Ciais, P. et al. A three-dimensional synthesis study of δ18O in atmospheric CO2, 1. Surface fluxes. J. Geophys. Res. 102, 5857–5872 (1997).

    Article  Google Scholar 

  26. Six, K. D. & Maier-Reimer, E. Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model. Glob. Biogeochem. Cycles 10, 559–583 (1996).

    Article  Google Scholar 

  27. Bopp, L., Kohfeld, K. E., Le Quéré, C. & Aumont, O. Dust impact on marine biota and atmospheric CO2 during glacial periods. Paleoceanography 18, d1046 (2003).

    Article  Google Scholar 

  28. Hoffmann, G. et al. A model of the Earth’s Dole effect. Glob. Biogeochem. Cycles 18, GB1008 (2004).

    Article  Google Scholar 

  29. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  Google Scholar 

  30. Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Change Biol. 14, 2015–2039 (2008).

    Article  Google Scholar 

  31. Blunier, T., Barnett, B., Bender, M. L. & Hendricks, M. B. Biological oxygen productivity during the last 60,000 years from triple oxygen isotope measurements. Glob. Biogeochem. Cycles 16, 1029 (2002).

    Article  Google Scholar 

  32. Friedlingstein, P. Modélisation du cycle du carbone biosphérique et étude du couplage biophère-atmosphère PhD thesis, Free Univ. Brussels (1995).

  33. Ikeda, T. & Tajika, E. Carbon cycling and climate change during the last glacial cycle inferred from the isotope records using an ocean biogeochemical carbon cycle model. Glob. Planet. Change 35, 131–141 (2003).

    Article  Google Scholar 

  34. Lourantou, A. et al. A detailed carbon isotopic constraint on the causes of the deglacial CO2 increase. Glob. Biogeochem. Cycle 24, GB2015 (2010).

    Article  Google Scholar 

  35. Bird, M. I., Llyod, J. & Farquhar, G. D. Terrestrial carbon-storage from the last glacial maximum to the present. Chemosphere 33, 1675–1685 (1996).

    Article  Google Scholar 

  36. Crowley, T. J. Ice age terrestrial carbon changes revisited. Glob. Biogeochem. Cycles 9, 377–389 (1995).

    Article  Google Scholar 

  37. Gruber, N. et al. in The Global Carbon Cycle: Integrating Humans, Climate and the Natural World Vol. 62 (eds Field, C. B. & Raupach, M.) (Island Press, 2004).

    Google Scholar 

  38. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  39. Ping, C-L. et al. High stocks of soil organic carbon in the North American Arctic region. Nature Geosci. 1, 615–619 (2008).

    Article  Google Scholar 

  40. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  41. Shakhova, N. et al. Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf. Science 327, 1246–1250.

    Article  Google Scholar 

  42. Bigelow, N. H. et al. Climatic change and Arctic ecosystems I. Vegetation changes north of 55° N between the last glacial maximum, mid-Holocene, and present. J. Geophys. Res. 108, 8170 (2003).

    Article  Google Scholar 

  43. Prentice, I. C. & Jolly, D. BIOME 6000 participants Mid-holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeogr. 27, 507–519 (2000).

    Article  Google Scholar 

  44. Marchant, R. A. Pollen-based biome reconstructions for Latin America at 0, 6000 and 18 000 radiocarbon years. Clim. Past 5, 725–767 (2009).

    Article  Google Scholar 

  45. Pickett, E. J. Pollen-based reconstructions of biome distributions for Australia, Southeast Asia and the Pacific (SEAPAC region) at 0, 6000 and 18,000 14C yr B.P. J. Biogeogr. 31, 1381–1444 (2004).

    Article  Google Scholar 

  46. Prentice, I. C., Harrison, S. P. & Bartlein, P. J. Tropical forests, ice ages and the carbon cycle. New Phytol. 189, 988–998 (2011).

    Article  Google Scholar 

  47. Zech, R., Huang, Y., Zech, M., Tarozo, R. & Zech, W. High carbon sequestration in Siberian permafrost loess-paleosols during glacials. Clim. Past 7, 501–509 (2011).

    Article  Google Scholar 

  48. Key, R. M. et al. A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP). Glob. Biogeochem. Cycles 18, GB4031 (2004).

    Article  Google Scholar 

  49. Prentice, I. C. et al. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycles 25, GB3005 (2011).

    Google Scholar 

  50. Thonicke, K. et al. The influence of vegetation, fire spread and fire behaviour on global biomass burning and trace gas emissions: Results from a process-based model. Biogeosciences 7, 1991–2011 (2010).

    Article  Google Scholar 

  51. Street-Perrott, F. A., Huang, Y., Perrott, R. A. & Eglinton, G. in Stable Isotopes: Integration of Biological, Ecological and Geochemical Processes (ed. Griffiths, H.) 381–396 (BIOS Scientific Publishers, 1998).

    Google Scholar 

  52. Prentice, I. C. & Sykes, M. T. in Biotic Feedbacks in the Global Climatic System: Will the warming speed the warming? (eds Woodwell, G. M. &Mackenzie, F. T.) 304–312 (Oxford Univ. Press, 1995).

    Google Scholar 

  53. François, L. M. et al. Modelling the glacial–interglacial changes in the continental biosphere. Glob. Planet. Change 16-17, 37–52 (1998).

    Article  Google Scholar 

  54. Kohler, P. & Fisher, H. Simulating changes in the terrestrial biosphere during the last glacial/interglacial transition. Glob. Planet. Change 43, 33–55 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank J-C. Duplessy for his comments on an early version of the manuscript, and M. H. Woillez for initial discussions about LGM carbon stocks. The PMIP2/MOTIF Data Archive is supported by CEA, CNRS, the EU project MOTIF (EVK2-CT-2002-00153) and the Programme National d’Etude de la Dynamique du Climat (PNEDC). The analyses were carried out using version 08-01-2009 of the database. More information is available at http://pmip2.lsce.ipsl.fr/ and http://motif.lsce.ipsl.fr/.

Author information

Authors and Affiliations

Authors

Contributions

P.C. developed the model and carried out the analyses. A.T. calculated ocean C stocks and the 13C isotopic composition for the PRE. M.C. carried out the uncertainty analysis associated with the terrestrial photosynthesis estimates. I.C.P., D.I.K., M.S. and S.P.H. provided simulated biomes parameters, and S.P.H. provided vegetation reconstructions. All co-authors substantially contributed to interpreting the results and writing the paper.

Corresponding authors

Correspondence to P. Ciais or A. Tagliabue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 746 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ciais, P., Tagliabue, A., Cuntz, M. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nature Geosci 5, 74–79 (2012). https://doi.org/10.1038/ngeo1324

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1324

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology