Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geochemical zoning of volcanic chains associated with Pacific hotspots

Abstract

Recent Hawaiian volcanism is manifest as two geographically and geochemically distinct groups of volcanoes1, the Loa trend in the south and the Kea trend in the north2,3. The differences between the Loa and Kea lavas are attributed to spatial variations in the geochemical structure of the underlying Hawaiian mantle plume4,5,6,7,8,9. In turn, the Hawaiian plume structure is thought to reflect heterogeneities in its mantle source7,8. Here we compile geochemical data10 from the Hawaiian and two other volcanic ocean island chains—the Samoan and Marquesas—that formed above mantle plumes upwelling beneath the Pacific plate. We find that the volcanoes at both Samoa11 and the Marquesas12 show geographic and geochemical trends similar to those observed at Hawaii. Specifically, two subparallel arrays of volcanoes exist at both locations. In each case, the southern trend of volcanoes has higher radiogenic lead isotope ratios, 208Pb*/206Pb*, and lower neodymium isotope ratios, ɛNd, than those of the corresponding northern trend. We suggest that geochemical zoning may be a common feature of mantle plumes beneath the Pacific plate. Furthermore, we find that the pattern repeats between island chains, with the highest 208Pb*/206Pb* and the lowest ɛNdfound at Samoa in the south and the lowest 208Pb*/206Pb* and the highest ɛNd observed at Hawaii in the north. We infer that isotopically enriched material is preferentially distributed in the lower mantle of the Southern Hemisphere, within the Pacific low seismic velocity zone.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: 208Pb*/206Pb* versus ɛNd for the Pacific hotspot lavas.
Figure 3: Geochemical variation of the Hawaiian, Samoan and Marquesas lavas with latitude.
Figure 4: Samoa, the Marquesas and Hawaii superimposed on maps of seismic shear wave velocity anomalies at 2,800 km depth.

Similar content being viewed by others

References

  1. Jackson, E. D., Silver, E. A. & Dalrymple, G. B. Hawaiian-Emperor chain and its relation to Cenozoic circumpacific tectonics. Geol. Soc. Am. Bull. 83, 601–618 (1972).

    Article  Google Scholar 

  2. Abouchami, W. et al. Lead isotopes reveal bilateral asymmetry and vertical continuity in the Hawaiian mantle plume. Nature 434, 851–856 (2005).

    Article  Google Scholar 

  3. Huang, S. et al. Enriched components in the Hawaiian plume: Evidence from Kahoolawe Volcano, Hawaii. Geochem. Geophys. Geosyst. 6, Q11006 (2005).

    Google Scholar 

  4. Lassiter, J. C., DePaolo, D. J. & Tatsumoto, M. Isotopic evolution of Mauna Kea volcano: Results from the initial phase of the Hawaiian Scientific Drilling Project. J. Geophys. Res. 101, 11769–11780 (1996).

    Article  Google Scholar 

  5. Blichert-Toft, J., Weis, D., Maerschalk, C., Agranier, A. & Albarède, F. Hawaiian hot spot dynamics as inferred from the Hf and Pb isotope evolution of Mauna Kea volcano. Geochem. Geophys. Geosyst. 4, 8704 (2003).

    Article  Google Scholar 

  6. Bryce, J. G., DePaolo, D. J. & Lassiter, J. C. Geochemical structure of the Hawaiian plume: Sr, Nd, and Os isotopes in the 2.8 km HSDP-2 section of Mauna Kea volcano. Geochem. Geophys. Geosyst. 6, Q09G18 (2005).

    Article  Google Scholar 

  7. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of a lower mantle plume conduit. Earth Planet. Sci. Lett. 282, 314–322 (2009).

    Article  Google Scholar 

  8. Farnetani, C. G. & Hofmann, A. W. Dynamics and internal structure of the Hawaiian plume. Earth Planet. Sci. Lett. 295, 231–240 (2010).

    Article  Google Scholar 

  9. Weis, D. A. Daly Lecture: Geochemical Insights into Mantle Geodynamics and Plume Structure. Abstract V41F-01 presented at 2010 Fall Meeting, AGU, San Francisco, California, 13–17 Dec. (2010).

  10. http://georoc.mpch-mainz.gwdg.de/.

  11. Jackson, M. G. et al. The return of subducted continental crust in Samoan lavas. Nature 448, 684–687 (2007).

    Article  Google Scholar 

  12. Chauvel, C., Blais, S., Maury, R. & Lewin, E. Isotopic streaks suggest a stripy plume under the Marquesas. Eos Trans. AGU (Fall Meeting Suppl.) 90 abstr. V24A-05 (2009).

  13. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008).

    Article  Google Scholar 

  14. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971).

    Article  Google Scholar 

  15. Courtillot, V., Davaille, A., Besse, J. & Stock, J. Three distinct types of hotspots in the Earth’s mantle. Earth Planet. Sci. Lett. 205, 295–308 (2003).

    Article  Google Scholar 

  16. Wolfe, C. J. et al. Mantle shear-wave velocity structure beneath the Hawaiian Hot Spot. Science 326, 1388–1390 (2010).

    Article  Google Scholar 

  17. Hieronymus, C. F. & Bercovici, D. Discrete alternating hotspot islands formed by interaction of magma transport and lithospheric flexure. Nature 397, 604–607 (1999).

    Article  Google Scholar 

  18. Hieronymus, C. F. & Bercovici, D. A theoretical model of hotspot volcanism: Control on volcanic spacing and patterns via magma dynamics and lithospheric stresses. J. Geophys. Res. 106, 683–702 (2001).

    Article  Google Scholar 

  19. Galer, S. J. G. & O’Nions, R. K. Residence time of thorium, uranium and lead in the mantle with implications for mantle convection. Nature 316, 778–782 (1985).

    Article  Google Scholar 

  20. Huang, S. & Frey, F. A. Recycled oceanic crust in the Hawaiian Plume: Evidence from temporal geochemical variations within the Koolau shield. Contrib. Mineral. Petrol. 149, 556–575 (2005).

    Article  Google Scholar 

  21. Workman, R. K. et al. Recycled metasomatized lithosphere as the origin of the enriched mantle II (EM2) end-member: Evidence from the Samoan volcanic chain. Geochem. Geophys. Geosyst. 5, Q04008 (2004).

    Article  Google Scholar 

  22. Salters, V. J. M., Blichert, J., Fekiacova, Z., Sachi-Kocher, A. & Bizimis, M. Isotope and trace element evidence for depleted lithosphere in the source of enriched Koolau basalts. Contrib. Mineral. Petrol. 151, 297–312 (2006).

    Article  Google Scholar 

  23. Blichert-Toft, J., Frey, F. A. & Albarède, F. Hf isotope evidence for pelagic sediments in the source of Hawaiian basalts. Science 285, 879–882 (1999).

    Article  Google Scholar 

  24. Hart, S. R. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature 309, 753–757 (1984).

    Article  Google Scholar 

  25. Castillo, P. The Dupal anomaly as a trace of the upwelling lower mantle. Nature 336, 667–670 (1988).

    Article  Google Scholar 

  26. Romanowicz, B. & Gung, Y. Superplumes from the core–mantle boundary to the lithosphere: Implications for heat flux. Science 296, 513–516 (2002).

    Article  Google Scholar 

  27. Farnetani, C. G. & Samuel, H. Beyond the thermal plume paradigm. Geophys. Res. Lett. 32, L07311 (2005).

    Article  Google Scholar 

  28. Druken, K. A., Kincaid, C. R. & Griffiths, R. W. Rollback subduction: The great killer of mantle plumes. Abstract U44A-06 presented at 2010 Fall Meeting, AGU, San Francisco, California, 13–17 Dec. (2010).

  29. Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006).

    Article  Google Scholar 

  30. Kustowski, B., Ekstrom, G. & Dziewonski, A.M. Anisotropic shear-wave velocity structure of the Earth’s mantle: A global model. J. Geophys. Res. 113, B06306 (2008).

    Article  Google Scholar 

  31. Ritsema, J., Deuss, A., van Heist, H. J. & Woodhouse, J. H. S40RTS: A degree-40 shear-velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys. J. Int. 184, 1223–1236 (2011).

    Article  Google Scholar 

  32. Jackson, E. D. & Shaw, H. R. Stress fields in central portions of the Pacific plate: Delineated in time by linear volcanic chains. J. Geophys. Res. 80, 1861–1874 (1975).

    Article  Google Scholar 

  33. Devey, C. W. et al. Giving birth to hotspot volcanoes: Distribution and composition of young seamounts from the seafloor near Tahiti and Pitcairn Island. Geology 31, 395–398 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. J. Morgan and C. Dalton for discussion, and A. W. Hofmann for constructive reviews.

Author information

Authors and Affiliations

Authors

Contributions

All three authors conceived the model, wrote the paper, prepared the figures, and contributed intellectually to the paper.

Corresponding author

Correspondence to Shichun Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 261 kb)

Supplementary Information

Supplementary Information (XLS 122 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Hall, P. & Jackson, M. Geochemical zoning of volcanic chains associated with Pacific hotspots. Nature Geosci 4, 874–878 (2011). https://doi.org/10.1038/ngeo1263

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1263

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing