Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A deep mantle origin for the primitive signature of ocean island basalt

Abstract

Seismological observations have identified large-scale compositional heterogeneities in the Earth’s deep mantle1,2,3,4,5. These heterogeneities may represent reservoirs of primitive material that differentiated early in Earth’s history6,7,8. The volcanic rocks that make up ocean islands are thought to be sourced, in part, from these deep reservoirs, with the primitive material transported to the surface via mantle plumes. Geochemical signatures within the erupted ocean island basalts further support the idea that the regions of heterogeneity are composed of primitive, undegassed mantle material7,9,10,11,12,13,14. Here we perform numerical experiments of thermo-chemical convection to simulate the entrainment of primitive material by plumes generated at the top of primitive reservoirs in the deep mantle. We vary the chemical density contrast between the primitive, undegassed and regular, degassed mantle materials. We find that the simulations that reproduce the observed geometry of the heterogeneous regions also explain the geochemical signatures measured in ocean island basalts. In these simulations, the entrainment of primitive material into the mantle plume does not exceed 9%. We conclude that the presence of primitive reservoirs in the deep mantle is dynamically feasible and satisfies both seismological and geochemical constraints.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Isosurfaces of composition (left column) and residual temperature (right column) for two numerical experiments.
Figure 2: Power spectra (spherical harmonic degrees L=2, 4 and 6) of average chemical (left column) and thermal (right column) density anomalies in the lowermost layer (2,000≤d≤2,891 km) for four models.
Figure 3: Average altitude of primitive material 〈hC〉 as a function of time for four cases.
Figure 4: Entrainment of primitive material, defined as the fraction xPM of primitive material in plumes.

Similar content being viewed by others

References

  1. van der Hilst, R. D. & Kárason, H. Compositional heterogeneities in the bottom 1,000 km of Earth’s mantle: Towards a hybrid convection model. Science 283, 1885–1888 (1999).

    Article  Google Scholar 

  2. Masters, G., Laske, G., Bolton, H. & Dziewonski, A. M. in Earth’s Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (eds Karato, S-I. et al.) 63–87 (Geophysical Monograph Ser., Vol. 117, American Geophysical Union, 2000).

    Book  Google Scholar 

  3. Deschamps, F. & Trampert, J. Mantle tomography and its relation to temperature and composition. Phys. Earth Planet. Inter. 140, 277–291 (2003).

    Article  Google Scholar 

  4. Ishii, M. & Tromp, J. Normal-mode and free-air gravity constraints on lateral variations in velocity and density of Earth’s mantle. Science 285, 1231–1236 (1999).

    Article  Google Scholar 

  5. Trampert, J., Deschamps, F., Resovsky, J. S. & Yuen, D. A. Probabilistic tomography maps significant chemical heterogeneities in the lower mantle. Science 306, 853–856 (2004).

    Article  Google Scholar 

  6. Solomatov, V. S. & Stevenson, D. J. Suspension in convective layers and style of differentiation of a terrestrial magma ocean. J. Geophys. Res. 98, 5375–5390 (1993).

    Article  Google Scholar 

  7. Boyet, M. & Carlson, R. W. 142Nd evidence for early (>4.53 Ga) global differentiation of the silicate Earth. Science 309, 576–581 (2005).

    Article  Google Scholar 

  8. Lee, C-T. et al. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930–933 (2010).

    Article  Google Scholar 

  9. Allègre, C. J., Staudacher, T., Sarda, P. & Kurtz, M. Constraints on evolution of Earth’s mantle from gas rare systematic. Nature 303, 762–766 (1983).

    Article  Google Scholar 

  10. Farley, K. A., Natland, J. H. & Craig, H. Binary mixing of enriched and undegassed (primitive?) mantle components (He, Sr, Nd, Pb) in Samoan lavas. Earth Planet. Sci. Lett. 111, 183–199 (1992).

    Article  Google Scholar 

  11. Allègre, C. J., Hofmann, A. & O’Nions, K. The Argon constraints on mantle structure. Geophys. Res. Lett. 24, 3555–3557 (1996).

    Article  Google Scholar 

  12. Hofmann, A. W. Mantle geochemistry: The message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  13. Stuart, F. M., Lass-Evans, S., Fitton, J. G. & Ellam, R. M. High 3He/4He ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes. Nature 424, 57–59 (2003).

    Article  Google Scholar 

  14. Jackson, M. G. et al. Evidence for the survival of the oldest terrestrial mantle reservoir. Nature 466, 853–856 (2010).

    Article  Google Scholar 

  15. Allègre, C. J. & Moreira, M. Rare gas systematic and the origin of oceanic islands: The key role of entrainment at the 670 km boundary layer. Earth Planet. Sci. Lett. 228, 85–92 (2004).

    Article  Google Scholar 

  16. van der Hilst, R. D., Widiyantoro, S. & Engdahl, E. R. Evidence for deep mantle circulation from seismic tomography. Nature 386, 578–584 (1997).

    Article  Google Scholar 

  17. Davaille, A. Simultaneous generation of hotspots and superswells by convection in a heterogeneous planetary mantle. Nature 402, 756–760 (1999).

    Article  Google Scholar 

  18. Le Bars, M. & Davaille, A. Whole layer convection in a homogeneous planetary mantle. J. Geophys. Res. 109, B03403 (2004).

    Article  Google Scholar 

  19. Tackley, P. J. Strong heterogeneity caused by deep mantle layering. Geochem. Geophys. Geosyst. 3, 1024 (2002).

    Google Scholar 

  20. McNamara, A. K. & Zhong, S. Thermochemical structures within a spherical mantle. J. Geophys. Res. 109, B07402 (2004).

    Article  Google Scholar 

  21. McNamara, A. K. & Zhong, S. Thermochemical structure beneath Africa and the Pacific ocean. Nature 437, 1136–1139 (2005).

    Article  Google Scholar 

  22. Tan, E. & Gurnis, M. Metastable superplumes and mantle compressibility. Geophys. Res. Lett. 32, L20307 (2005).

    Article  Google Scholar 

  23. Tan, E. & Gurnis, M. Compressible thermo-chemical convection and application to the lower mantle. J. Geophys. Res. 112, B06304 (2007).

    Google Scholar 

  24. Deschamps, F. & Tackley, P. J. Exploring the model space of thermo-chemical convection I—principles and influence of the rheological parameters. Phys. Earth Planet. Inter. 171, 357–373 (2008).

    Article  Google Scholar 

  25. Deschamps, F. & Tackley, P. J. Exploring the model space of thermo-chemical convection II—influence of physical and compositional parameters. Phys. Earth Planet. Inter. 176, 1–18 (2009).

    Article  Google Scholar 

  26. van Summeren, J. R. G., van den Berg, A. P. & van der Hilst, R. D. Upwellings from a deep mantle reservoir filtered at the 660 km phase transition in thermo-chemical convection models and implications for intra-plate volcanism. Phys. Earth Planet. Inter. 172, 210–224 (2009).

    Article  Google Scholar 

  27. Labrosse, S. Hotspots, mantle plumes and core heat loss. Earth Planet. Sci. Lett. 199, 147–156 (2002).

    Article  Google Scholar 

  28. Humayun, M., Qin, L. & Norman, N. D. Geochemical evidence for excess iron in the mantle beneath Hawaii. Science 306, 91–94 (2004).

    Article  Google Scholar 

  29. Javoy, M. et al. The chemical composition of the Earth: Enstatite chondrite model. Earth Planet. Sci. Lett. 293, 259–268 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to A. McNamara and A. van den Berg for their useful and constructive comments and reviews. All thermo-chemical models of convection were calculated on ETH super-cluster Brutus.

Author information

Authors and Affiliations

Authors

Contributions

All three authors equally contributed to the project.

Corresponding author

Correspondence to Frédéric Deschamps.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1659 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschamps, F., Kaminski, E. & Tackley, P. A deep mantle origin for the primitive signature of ocean island basalt. Nature Geosci 4, 879–882 (2011). https://doi.org/10.1038/ngeo1295

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo1295

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing