Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Terrestrial biogeochemical feedbacks in the climate system

Abstract

The terrestrial biosphere is a key regulator of atmospheric chemistry and climate. During past periods of climate change, vegetation cover and interactions between the terrestrial biosphere and atmosphere changed within decades. Modern observations show a similar responsiveness of terrestrial biogeochemistry to anthropogenically forced climate change and air pollution. Although interactions between the carbon cycle and climate have been a central focus, other biogeochemical feedbacks could be as important in modulating future climate change. Total positive radiative forcings resulting from feedbacks between the terrestrial biosphere and the atmosphere are estimated to reach up to 0.9 or 1.5 W m−2 K−1 towards the end of the twenty-first century, depending on the extent to which interactions with the nitrogen cycle stimulate or limit carbon sequestration. This substantially reduces and potentially even eliminates the cooling effect owing to carbon dioxide fertilization of the terrestrial biota. The overall magnitude of the biogeochemical feedbacks could potentially be similar to that of feedbacks in the physical climate system, but there are large uncertainties in the magnitude of individual estimates and in accounting for synergies between these effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Radiative forcing from terrestrial biogeochemistry feedbacks in response to anthropogenic atmospheric and climate changes.
Figure 2: Superposed epoch analysis of ice-core and biomass-burning records over the interval 80 ka to 10 ka.

Similar content being viewed by others

References

  1. Heimann, M. & Reichstein, M. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451, 289–292 (2008).

    Google Scholar 

  2. Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    Google Scholar 

  3. Canadell, J. G. et al. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl Acad. Sci. USA 104, 18866–18870 (2007).

    Article  Google Scholar 

  4. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Google Scholar 

  5. Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Google Scholar 

  6. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Google Scholar 

  7. Vitousek, P., Hättenschwiler, S., Olander, L. & Allison, S. Nitrogen and Nature. Ambio 31, 97–102 (2002).

    Google Scholar 

  8. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    Google Scholar 

  9. Thornton, P. E. et al. Carbon-nitrogen interactions regulate climate-carbon cycle feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6, 2099–2120 (2009).

    Google Scholar 

  10. Sokolov, A. P. et al. Consequences of considering carbon-nitrogen interactions on the feedbacks between climate and the terrestrial carbon cycle. J. Clim. 21, 3776–3796 (2008).

    Google Scholar 

  11. Zaehle, S., Friedlingstein, P. & Friend, A. D. Terrestrial nitrogen feedbacks may accelerate future climate change. Geoph. Res. Lett. 37, L01401 (2010).

    Google Scholar 

  12. Forster, P. et al. in Climate Change 2007: The Physical Science Basis. (eds Solomon, S. et al.) 130–234 (Cambridge Univ. Press, 2007).

    Google Scholar 

  13. Frolking, S. & Roulet, N. T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol. 13, 1079–1088 (2007).

    Google Scholar 

  14. Gedney, N., Cox, P. M. & Huntingford, C. Climate feedback from wetland methane emissions. Geophys. Res. Lett. 31, L20503 (2004).

    Google Scholar 

  15. Eliseev, A. V., Mokhov, I. I., Arzhanov, M. M., Demchenko, P. F. & Denisov, S. N. Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity. Izv. Atmos. Ocean. Phys. 44, 139–152 (2008).

    Google Scholar 

  16. Volodin, E. M. Methane cycle in the INM RAS climate model. Izv. Atmos. Ocean. Phys. 44, 153–159 (2008).

    Google Scholar 

  17. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Google Scholar 

  18. Lawrence, D. M. & Slater, A. G. A projection of severe near-surface permafrost degradation during the 21st century. Geophys. Res. Lett. 32, L24401 (2005).

    Google Scholar 

  19. Walter, K. M., Zimov, S. A., Chanton, J. P., Verbyla, D. & Chapin, F. S. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443, 71 (2006).

    Google Scholar 

  20. Bragazza, L. et al. Atmospheric nitrogen deposition promotes carbon loss from peat bogs. Proc. Natl Acad. Sci. USA 103, 19386–19389 (2006).

    Google Scholar 

  21. Gruber, N. et al. in The Global Carbon Cycle: Integrating Humans, Climate, and the Natural World (eds Field, C. & Raupach, M. R.) 45–76 (Island, 2004).

    Google Scholar 

  22. Zhuang, Q. et al. CO2 and CH4 exchanges between land ecosystems and the atmosphere in northern high latitudes over the 21st century. Geophys. Res. Lett. 33, L17403 (2006).

    Google Scholar 

  23. Khvorostyanov, D. V., Ciais, P., Krinner, G. & Zimov, S. A. Vulnerability of east Siberia's frozen carbon stores to future warming. Geophys. Res. Lett. 35, L10703 (2008).

    Google Scholar 

  24. Ise, T., Dunn, A. L., Wofsy, S. C. & Moorcroft, P. R. High sensitivity of peat decomposition to climate change through water-table feedback. Nature Geosci. 1, 763–766 (2008).

    Google Scholar 

  25. Denman, K. L. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 499–587 (Cambridge Univ. Press, 2007).

    Google Scholar 

  26. Ashmore, M. R. Assessing the future global impacts of ozone on vegetation. Plant Cell Environ. 28, 949–964 (2005).

    Google Scholar 

  27. Sitch, S., Cox, P. M., Collins, W. J. & Huntingford, C. Indirect radiative forcing of climate change through ozone effects on the land-carbon sink. Nature 448, 791–794 (2007).

    Google Scholar 

  28. Jaegle, L., Steinberger, L., Martin, R. V. & Chance, K. Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions. Faraday Discuss. 130, 407–423 (2005).

    Google Scholar 

  29. Arneth, A., Monson, R. K., Schurgers, G., Niinemets, U. & Palmer, P. I. Why are estimates of global isoprene emissions so similar (and why is this not so for monoterpenes)? Atm. Chem. Phys. 8, 4605–4620 (2008).

    Google Scholar 

  30. Mickley, L. J., Jacob, D. & Rind, D. Uncertainty in preindustrial abundance of tropospheric ozone: Implications for radiative forcing calculations. J. Geophys. Res. 106, 3389–3399 (2001).

    Google Scholar 

  31. Hauglustaine, D. A., Lathiere, J., Szopa, S. & Folberth, G. A. Future tropospheric ozone simulated with a climate-chemistry-biosphere model. Geophys. Res. Lett. 32, L24807 (2005).

    Google Scholar 

  32. Arneth, A. et al. CO2 inhibition of global terrestrial isoprene emissions: Potential implications for atmospheric chemistry. Geophys. Res. Lett. 34, L18813 (2007).

    Google Scholar 

  33. Young, P. J., Arneth, A., Schurgers, G., Zeng, G. & Pyle, J. The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atm. Chem. Phys. 9, 2793–2803 (2009).

    Google Scholar 

  34. Lelieveld, J. et al. Atmospheric oxidation capacity sustained by a tropical forest. Nature 452, 737–740 (2008).

    Google Scholar 

  35. Paulot, F. et al. Unexpected epoxide formation in the gas-phase photooxidation of isoprene. Science 325, 730–733 (2009).

    Google Scholar 

  36. Ramanathan, V. & Carmichael, G. Global and regional climate changes due to black carbon. Nature Geosci. 1, 221–227 (2008).

    Google Scholar 

  37. Andreae, M. O. Atmospheric aerosols versus greenhouse gases in the twenty-first century. Phil. Trans. R. Soc. A 365, 1915–1923 (2007).

    Google Scholar 

  38. Shindell, D. & Faluvegi, G. Climate response to regional radiative forcing during the twentieth century. Nature Geosci. 2, 294–300 (2009).

    Google Scholar 

  39. Rosenfeld, D. et al. Flood or drought: how do aerosols affect precipitation? Science 321, 1309–1313 (2008).

    Google Scholar 

  40. Carslaw, K. S. et al. A review of natural aerosol interactions and feedbacks within the Earth system. Atmos. Chem. Phys. 10, 1701–1737 (2010).

    Google Scholar 

  41. Hallquist, M. et al. The formation, properties and impact of secondary organic aerosol: current and emerging issues. Atm. Chem. Phys. 9, 5155–5235 (2009).

    Google Scholar 

  42. Kanakidou, M., Tsigaridis, K., Dentener, F. J. & Crutzen, P. J. Human-activity-enhanced formation of organic aerosols by biogenic hydrocarbon oxidation. J. Geophys. Res. 105, 9243–9254 (2000).

    Google Scholar 

  43. Tunved, P. et al. High natural aerosol loading over boreal forests. Science 312, 261–263 (2006).

    Google Scholar 

  44. Bonn, B. & Moortgat, G. K. Sesquiterpene ozonolysis: Origin of atmospheric new particle formation from biogenic hydrocarbons. Geophys. Res. Lett. 30, 1585 (2003).

    Google Scholar 

  45. Claeys, M. et al. Formation of secondary organic aerosols through photooxidation of isoprene. Science 303, 1173–1176 (2004).

    Google Scholar 

  46. Kiendler-Scharr, A. et al. New particle formation in forests inhibited by isoprene emissions. Nature 461, 381–384 (2009).

    Google Scholar 

  47. Kulmala, M. et al. A new feedback mechanism linking forests, aerosols, and climate. Atm. Chem. Phys. 4, 557–562 (2004).

    Google Scholar 

  48. O'Donnell, D. Towards the Assessment of the Climate Effects of Secondary Organics Aerosols PhD thesis, Univ. Hamburg (2010).

    Google Scholar 

  49. Tsigaridis, K. & Kanakidou, M. Secondary organic aerosol importance in the future atmosphere. Atm. Env. 41, 4682–4692 (2007).

    Google Scholar 

  50. Heald, C. L. et al. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res. 113, D05211 (2008).

    Google Scholar 

  51. Snow, M. D. et al. Monoterpene levels in needles of Douglas fir exposed to elevated CO2 and temperature. Physiol. Plantarum 117, 352–358 (2003).

    Google Scholar 

  52. Schurgers, G., Arneth, A., Holzinger, R. & Goldstein, A. H. Process-based modelling of biogenic monoterpene emissions: sensitivity to temperature and light. Atm. Chem. Phys. 9, 3409–3423 (2009).

    Google Scholar 

  53. Bowman, D. M. J. S. et al. Fire in the Earth System. Science 324, 481–484 (2009).

    Google Scholar 

  54. Bian, H. et al. Sensitivity of global CO simulations to uncertainties in biomass burning sources. J. Geophys. Res. 112, D23308 (2007).

    Google Scholar 

  55. Naik, V. et al. On the sensitivity of radiative forcing from biomass burning aerosols and ozone to emission location. Geophys. Res. Lett. 34, L03818 (2007).

    Google Scholar 

  56. Ito, A., Sudo, K., Akimoto, H., Sillman, S. & Penner, J. Global modeling analysis of tropospheric ozone and its radiative forcing from biomass burning emissions in the twentieth century. J. Geophys. Res. 112, D24307 (2007).

    Google Scholar 

  57. Loulergue, L. et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years. Nature 453, 383–386 (2008).

    Google Scholar 

  58. Lambert, F. et al. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452, 616–619 (2008).

    Google Scholar 

  59. Luthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008).

    Google Scholar 

  60. Jansen, E. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 433–497 (Cambridge Univ. Press, 2007).

    Google Scholar 

  61. Gajewski, K. The Global Pollen Database in biogeographical and palaeoclimatic studies. Prog. Phys. Geogr. 32, 379–402 (2008).

    Google Scholar 

  62. Prentice, I. C., Jolly, D. & BIOME 6000 Participants. Mid-Holocene and glacial-maximum vegetation geography of the northern continents and Africa. J. Biogeo. 27, 507–519 (2000).

    Google Scholar 

  63. Kohfeld, K. E. & Harrison, S. P. DIRTMAP: the geological record of dust. Earth Sci. Rev. 65, 81–114 (2001).

    Google Scholar 

  64. Power, M. J. et al. Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30, 887–907 (2008).

    Google Scholar 

  65. Tzedakis, P. C. Towards an understanding of the response of southern European vegetation to orbital and suborbital climate variability. Quat. Sci. Rev. 24, 1585–1599 (2005).

    Google Scholar 

  66. Jahn, A., Claussen, M., Ganopolski, A. & Brovkin, V. Quantifying the effect of vegetation dynamics on the climate of the last glacial maximum. Clim. Past 1, 1–7 (2005).

    Google Scholar 

  67. Claussen, M. & Gayler, V. The greening of the Sahara during the mid-Holocene: Results of an interactive atmosphere-biome model. Quat. Sci. Rev. 6, 369–377 (1997).

    Google Scholar 

  68. Braconnot, P. et al. Results of PMIP2 coupled simulations of the mid-Holocene and Last Glacial Maximum, Part 2: feedbacks with emphasis on the location of the ITCZ and mid- and high latitudes heat budget. Clim. Past 3, 279–296 (2007).

    Google Scholar 

  69. MacDonald, G. M. et al. Rapid early development of circumarctic peatlands and atmospheric CH4 and CO2 variations. Science 314, 285–288 (2006).

    Google Scholar 

  70. Yu, Z., Beilman, D. W. & Jones, M. C. in Geophy. Monog. Series (eds Baird, A. J. et al.) (AGU, 2009).

    Google Scholar 

  71. Kaufman, D. S. et al. Holocene thermal maximum in the western Arctic (0–180° W). Quat. Sci. Rev. 23, 529–560 (2004).

    Google Scholar 

  72. Oldfield, F. et al. Radiocarbon dating of a recent high-latitude peat profile: Stor Amyran, northern Sweden. Holocene 7, 283–290 (1997).

    Google Scholar 

  73. Korhola, A. et al. The importance of northern peatland expansion to the Late-Holocene rise of atmospheric methane. Quat. Sci. Rev. 29, 611–617 (2010).

    Google Scholar 

  74. Frolking, S., Roulet, N. & Fuglestvedt, J. How northern peatlands influence the Earth's radiative budget: Sustained methane emission versus sustained carbon sequestration. J. Geophys. Res. 111, G01008 (2006).

    Google Scholar 

  75. Martinerie, P., Brasseur, G. P. & Granier, C. The chemical composition of ancient atmospheres: A model study constrained by ice core data. J. Geophys. Res. 100, 14291–14304 (1995).

    Google Scholar 

  76. Schaefer, H. et al. Ice record of d13C for atmospheric CH4 across the Younger Dryas-Preboreal transition. Science 313, 1109–1112 (2006).

    Google Scholar 

  77. Kaplan, J. O., Folberth, G. & Hauglustaine, D. A. Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations. Glob. Biogeochem. Cycles 20, GB2016 (2006).

    Google Scholar 

  78. Valdes, P. J., Beerling, D. J. & Johnson, D. E. The ice age methane budget. Geophys. Res. Lett. 32, L02704 (2005).

    Google Scholar 

  79. Marlon, J. R. et al. Climate and human influences on global biomass burning over the past two millennia. Nature Geosci. 1, 697–702 (2008).

    Google Scholar 

  80. Ferretti, D. F. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005).

    Google Scholar 

  81. Daniau, A-L., Harrison, S. P. & Bartlein, P. J. Fire regimes during the last glacial. Quat. Sci. Rev. 10.1016/j.quascirev.2009.1011.1008 (2010).

  82. Marlon, J. R. et al. Wildfire responses to abrupt climate change in North America. Proc. Natl Acad. Sci. USA 106, 2519–2524 (2009).

    Google Scholar 

  83. Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296, 1687–1689 (2002).

    Google Scholar 

  84. Christensen, T. R., Johansson, T., Åkerman, H. J. & Mastepanov, M. Thawing sub-arctic permafrost: Effects on vegetation and methane emissions. Geophys. Res. Lett. 31, L04501 (2004).

    Google Scholar 

  85. Peylin, P. et al. Multiple constraints on regional CO2 flux variations over land and oceans. Glob. Biogeochem. Cycles 19, GB1011 (2005).

    Google Scholar 

  86. Randerson, J. R., Thompson, M. V., Conway, T. J., Fung, I. & Field, C. B. The contribution of terrestrial sources and sinks to trends in the seasonal cycle of atmospheric carbon dioxide. Glob. Biogeochem. Cycles 11, 535–560 (1997).

    Google Scholar 

  87. Bousquet, P. et al. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature 443, 439–443 (2006).

    Google Scholar 

  88. Langmann, B., Duncan, B., Textor, C., Trentmann, J. & van der Werf, G. R. Vegetation fire emissions and their impact on air pollution and climate. Atmos. Env. 43, 107–116 (2009).

    Google Scholar 

  89. Running, S. W. Ecosystem disturbance, carbon, and climate. Science 321, 652–653 (2008).

    Google Scholar 

  90. Jones, C., Lowe, J., Liddicoat, S. & Betts, R. Committed terrestrial ecosystem changes due to climate change. Nature Geosci. 2, 484–487 (2009).

    Google Scholar 

  91. Bonan, G. B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    Google Scholar 

  92. Betts, R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187–190 (2000).

    Google Scholar 

  93. Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Google Scholar 

  94. Lathière, J. et al. Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atm. Chem. Phys. 6, 2129–2146 (2006).

    Google Scholar 

  95. Hewitt, C. N. et al. Nitrogen management is essential to prevent tropical oil palm plantations from causing ground-level ozone pollution. Proc. Natl Acad. Sci. USA 106, 18447–18451 (2009).

    Google Scholar 

  96. Soden, B. J. & Held, I. M. An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate 19, 3354–3360 (2006).

    Google Scholar 

  97. Shindell, D. T. et al. Multimodel projections of climate change from short-lived emissions due to human activities. J. Geophys. Res. 113, D11109 (2008).

    Google Scholar 

  98. Boucher, O. & Reddy, M. S. Climate trade-off between black carbon and carbon dioxide. Energ. Policy 36, 193–200 (2008).

    Google Scholar 

  99. Betts, R. A. et al. Projected increase in continental runoff due to plant responses to increasing carbon dioxide. Nature 448, 1037–1041 (2007).

    Google Scholar 

  100. Collins, W. J., Derwent, R. G., Johnson, C. E. & Stevenson, D. S. The oxidation of organic compounds in the troposphere and their global warming potentials. Clim. Change 52, 453–479 (2002).

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Integrated Land Ecosystem–Atmosphere Processes Study (iLEAPS), core project of the International Geosphere–Biosphere Programme (IGBP), and the discussions at the Science Workshop on Past, Present and Future Climate Change in Helsinki, November 2008. The Helsinki workshop and the manuscript preparation were supported by the Finnish Cultural Foundation. A.A. acknowledges support from the Academy of Finland, and the Swedish research councils VR and Formas. S.P.H. and S.Z. acknowledge funding from the EC-supported project GREENCYCLES (MRTN-CT-2004-512464). K.T. was supported by an appointment to the NASA Postdoctoral Program at the Goddard Institute for Space Studies, administered by Oak Ridge Associated Universities through a contract with NASA. The work at Lawrence Berkeley National Laboratory was performed under Contract No. DE-AC02-05CH11231. S.M. acknowledges funding support from the NASA MAP program and the DOE ASR program. P.J.B. acknowledges support from the US NSF Paleoclimate program. Suggestions made by Chris Jones helped to improve our analysis substantially.

Author information

Authors and Affiliations

Authors

Contributions

This Review was conceived at a workshop coordinated by M.K., A.K. and S.S., and all authors participated in the subsequent discussions and planning. S.M., K.T., S.Z., H.F., D.D. and G.S. contributed model simulations; A.A., S.P.H., P.J.B., S.S. and S.Z. were responsible for analyses and figures; and A.A. and S.P.H. were responsible for the first draft of the paper. All authors provided input to the drafting and final version of the manuscript.

Corresponding author

Correspondence to A. Arneth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 441 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arneth, A., Harrison, S., Zaehle, S. et al. Terrestrial biogeochemical feedbacks in the climate system. Nature Geosci 3, 525–532 (2010). https://doi.org/10.1038/ngeo905

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo905

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology