Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

External forcing as a metronome for Atlantic multidecadal variability

Abstract

Instrumental records, proxy data and climate modelling show that multidecadal variability is a dominant feature of North Atlantic sea-surface temperature variations1,2,3,4, with potential impacts on regional climate5. To understand the observed variability and to gauge any potential for climate predictions it is essential to identify the physical mechanisms that lead to this variability, and to explore the spatial and temporal characteristics of multidecadal variability modes. Here we use a coupled ocean–atmosphere general circulation model to show that the phasing of the multidecadal fluctuations in the North Atlantic during the past 600 years is, to a large degree, governed by changes in the external solar and volcanic forcings. We find that volcanoes play a particularly important part in the phasing of the multidecadal variability through their direct influence on tropical sea-surface temperatures, on the leading mode of northern-hemisphere atmosphere circulation and on the Atlantic thermohaline circulation. We suggest that the implications of our findings for decadal climate prediction are twofold: because volcanic eruptions cannot be predicted a decade in advance, longer-term climate predictability may prove challenging, whereas the systematic post-eruption changes in ocean and atmosphere may hold promise for shorter-term climate prediction.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and simulated northern hemisphere temperature and Atlantic multidecadal oscillation.
Figure 2: The role of external forcing for Atlantic multidecadal variability.
Figure 3: Simulated North Atlantic oscillation and Atlantic meridional overturning circulation.
Figure 4: Simulated responses to volcanic forcing.

Similar content being viewed by others

References

  1. Folland, C. K., Parker, D. E. & Palmer, T. N. Sahel rainfall and worldwide sea temperatures, 1901–85. Nature 320, 602–607 (1986).

    Article  Google Scholar 

  2. Delworth, T. L. & Mann, M. E. Observed and simulated multi-decadal variability in the Northern Hemisphere. Clim. Dyn. 16, 661–676 (2000).

    Article  Google Scholar 

  3. Parker, D. et al. Decadal to multidecadal variability and the climate change background. J. Geophys. Res. 112, D18115 (2007).

    Article  Google Scholar 

  4. Mann, M. E. et al. Global signatures and dynamical origins of the little ice age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  5. Knight, J. R., Folland, C. K. & Scaife, A. Climate impacts of the Atlantic Multidecadal Oscillation. Geophys. Res. Lett. 33, L17706 (2006).

    Article  Google Scholar 

  6. Schlesinger, M. E. & Ramankutty, N. An oscillation in the global climate system of period 65–70 years. Nature 367, 723–726 (1994).

    Article  Google Scholar 

  7. Gray, S. T., Graumlich, L. J., Betancourt, J. L. & Pederson, G. T. A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 A.D. Geophys. Res. Lett. 31, L12205 (2004).

    Article  Google Scholar 

  8. Jungclaus, J., Haak, H., Latif, M. & Mikolajewicz, U. Arctic–North Atlantic interactions and multidecadal variability of the meridional overturning circulation. J. Clim. 18, 4013–4031 (2005).

    Article  Google Scholar 

  9. Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005).

    Article  Google Scholar 

  10. Trenberth, K. E. & Shea, D. J. Atlantic hurricanes and natural variability in 2005. Geophys. Res. Lett. 33, L12704 (2006).

    Article  Google Scholar 

  11. Guan, B. & Nigam, S. Analysis of Atlantic SST variability factoring interbasin links and the secular trend: Clarified structure of the Atlantic multidecadal oscillation. J. Clim. 22, 4228–4240 (2009).

    Article  Google Scholar 

  12. Collins, M. et al. Interannual to decadal predictability in the North Atlantic: A multimodel-ensemble study. J. Clim. 19, 1195–1203 (2006).

    Article  Google Scholar 

  13. Lean, J. L. & Rind, D. How will Earth’s surface temperature change in future decades? Geophys. Res. Lett. 36, L15708 (2009).

    Article  Google Scholar 

  14. Otterå, O. H., Bentsen, M., Bethke, I. & Kvamstø, N. G. Simulated pre-industrial climate in Bergen climate model (version 2): Model description and large-scale circulation features. Geosci. Mod. Dev. 2, 197–212 (2009).

    Article  Google Scholar 

  15. Crowley, T. J., Baum, S. K., Kim, K-Y., Hegerl, G. C. & Hyde, W. T. Modeling ocean heat content changes during the last millennium. Geophys. Res. Lett. 30, 1932 (2003).

    Article  Google Scholar 

  16. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new dataset from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article  Google Scholar 

  17. Jansen, E. et al. in IPCC WG1 Fourth Assessment Report (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

    Google Scholar 

  18. Latif, M., Park, W., Ding, H. & Keenlyside, N. S. Internal and external North Atlantic sector variability in the Kiel climate model. Meteorol. Zeit. 18, 433–443 (2009).

    Article  Google Scholar 

  19. Swingedouw, D. et al. Natural forcing of climate during the last millennium: Fingerprint of solar variability. Clim. Dyn. (10.1007/s00382-010-0803-5) (2010, in the press).

  20. Gregory, J. M. et al. A model intercomparison of changes in the Atlantic thermohaline circulation in response to increasing atmospheric CO2 concentration. Geophys. Res. Lett. 32, L12703 (2005).

    Article  Google Scholar 

  21. Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipation. Science 269, 676–679 (1995).

    Article  Google Scholar 

  22. Eden, C. & Jung, T. North Atlantic interdecadal variability: Oceanic response to the North Atlantic oscillation (1865–1997). J. Clim. 14, 676–691 (2001).

    Article  Google Scholar 

  23. Delworth, T. L. & Greatbatch, R. J. Multidecadal thermohaline circulation variability driven by atmospheric surface flux forcing. J. Clim. 13, 1481–1495 (2000).

    Article  Google Scholar 

  24. Shindell, D. T., Schmidt, G. A., Mann, M. E., Rind, D. & Waple, A. Solar forcing of regional climate change during the Maunder minimum. Science 294, 2149–2155 (2001).

    Article  Google Scholar 

  25. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Article  Google Scholar 

  26. Otterå, O. H. Simulating the effects of the 1991 Mount Pinatubo volcanic eruption using the ARPEGE atmosphere general circulation model. Adv. Atmos. Sci. 25, 213–226 (2008).

    Google Scholar 

  27. Stenchikov, G. et al. Climate impacts of volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. 111, D07107 (2006).

    Article  Google Scholar 

  28. Stenchikov, G. et al. Volcanic signals in oceans. J. Geophys. Res. 114, D16104 (2009).

    Article  Google Scholar 

  29. Sato, M., Hansen, J. E., McCormick, M. P. & Pollack, J. B. Stratospheric aerosol optical depths 1850–1990. J. Geophys. Res. 98, 22987–22994 (1993).

    Article  Google Scholar 

  30. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land–ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Miles, T. Eldevik and T. Furevik for comments on an earlier version of the manuscript. This study has been supported by the Research Council of Norway through the NorClim and ARCWARM projects, and by the Program of Supercomputing. Financial support by the EU FP6 Integrated Project ENSEMBLES (Contract 505539) is acknowledged. This study also contributes to the EU FP6 integrated project THOR, and the DecCen project financed by the Research Council of Norway. This is Publication A296 from the Bjerknes Centre for Climate Research.

Author information

Authors and Affiliations

Authors

Contributions

O.H.O. conceived the study, designed the model experiments and wrote the initial manuscript. O.H.O., M.B. and L.S. carried out the BCM experiments. O.H.O. processed the model results and did the main analyses. H.D. contributed to the scientific results through discussions and analyses. All authors participated in writing the paper and analysing the results.

Corresponding author

Correspondence to Odd Helge Otterå.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplemetary Information

Supplemetary Information (PDF 1786 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Otterå, O., Bentsen, M., Drange, H. et al. External forcing as a metronome for Atlantic multidecadal variability. Nature Geosci 3, 688–694 (2010). https://doi.org/10.1038/ngeo955

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo955

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing