Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord

Abstract

Ice-sheet behaviour is disproportionately controlled by the dynamics of outlet glaciers that terminate in the ocean1,2. However, outlet-glacier dynamics—particularly over timescales longer than the observational record—are not well understood3, leading to uncertainties in our models of ice-sheet response to climate change. Here we use 10Be exposure ages and radiocarbon dating from the Sam Ford Fjord in the Canadian Arctic to reconstruct the retreat chronology of an outlet glacier of the Laurentide ice sheet, following the last glacial termination. We find that Sam Ford Fjord, which has a similar morphology to the troughs holding many outlet glaciers of the Greenland ice sheet, was rapidly deglaciated about 9,500 years ago, with retreat rates ranging from 5 to 58 m yr−1. The highest rates occurred in the deepest part of the fjord (900 m), whereas regions beyond the fjord mouth and up-valley of the head of the fjord experienced the lowest rates of retreat. We conclude that in such a fjord setting, there is a strong bathymetric control on the retreat of marine outlet glaciers: once the terminus of the outlet glacier retreated into deeper waters, increasing calving rates and basal sliding speeds caused the glacier to rapidly thin and retreat, stabilizing only when it reached the shallow inland head of the fjord.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Sam Ford Fjord drained part of the northeastern Laurentide ice sheet.
Figure 2: Sample locations, 10Be and 14C ages and the Sam Ford Fjord landscape.

Similar content being viewed by others

References

  1. Bennet, M. R. Ice streams as the arteries of an ice sheet: Their mechanisms, stability and significance. Earth Sci. Rev. 61, 309–339 (2005).

    Article  Google Scholar 

  2. Rignot, E. & Kanagaratnam, P. Changes in the velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006).

    Article  Google Scholar 

  3. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor M., and Miller, H. L.) (Cambridge Univ. Press, 2007).

  4. Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nature Geosci. 1, 365–369 (2008).

    Article  Google Scholar 

  5. Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobshavn Isbrae glacier. Nature 432, 608–610 (2004).

    Article  Google Scholar 

  6. Howat, I. M., Joughin, I. & Scambos, T. A. Rapid changes in ice discharge from Greenland outlet glaciers. Science 315, 1559–1561 (2007).

    Article  Google Scholar 

  7. Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci. 2, 110–114 (2009).

    Article  Google Scholar 

  8. Parizek, B. R. & Alley, R. B. Ice thickness and isostatic imbalances in the Ross Embayment, West Antarctica: Model results. Glob. Planet. Change 42, 265–278 (2004).

    Article  Google Scholar 

  9. Pfeffer, W. T. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res. 112, F03S25 (2007).

    Article  Google Scholar 

  10. Van de Wal, R. S. W. et al. Large rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet. Science 321, 111–113 (2008).

    Article  Google Scholar 

  11. Clark, P. U., Alley, R. B. & Pollard, D. Northern Hemisphere ice-sheet influences on global climate change. Science 286, 1104–1111 (1999).

    Article  Google Scholar 

  12. Stone, J. O. et al. Holocene deglaciation of Marie Byrd Land, West Antarctica. Science 299, 99–102 (2003).

    Article  Google Scholar 

  13. Johnson, J. S., Bentley, M. J. & Gohl, K. First exposure ages from the Amundsen Sea Embayment, West Antarctica: The late Quaternary context for recent thinning of Pine Island, Smith, and Pope Glaciers. Geology 36, 223–226 (2008).

    Article  Google Scholar 

  14. Dyke, A. S., Moore, A. & Robinson, L. Deglaciation of North America. Geol. Surv. Can. Open File 1574 (2003).

  15. Bentley, M. J. et al. Early Holocene retreat of the George VI Ice Shelf, Antarctic Peninsula. Geology 33, 173–176 (2005).

    Article  Google Scholar 

  16. Andrews, J. T. & Ives, J. D. ‘Cockburn’ nomenclature and the Late Quaternary history of the eastern Canadian Arctic. Arctic Alpine Res. 10, 617–633 (1978).

    Article  Google Scholar 

  17. Buckley, J. T. Gradients of past and present outlet glaciers. Geol. Surv. Pap. Can. 69-29 (1969).

  18. Kaplan, M. R. & Miller, G. H. Early Holocene delevelling and deglaciation of the Cumberland Sound region, Baffin Island, Arctic Canada. Geol. Soc. Am. Bull. 115, 445–462 (2003).

    Article  Google Scholar 

  19. Briner, J. P., Miller, G. H., Davis, P. T. & Finkel, R. C. Cosmogenic radionuclides from fiord landscapes support differential erosion by overriding ice sheets. Geol. Soc. Am. Bull. 118, 406–420 (2006).

    Article  Google Scholar 

  20. Davis, P. T., Briner, J. P., Coulthard, R. D., Finkel, R. C. & Miller, G. H. Preservation of arctic landscapes overridden by cold-based ice sheets. Quat. Res. 65, 156–163 (2006).

    Article  Google Scholar 

  21. Briner, J. P., Miller, G. H., Finkel, R. & Hess, D. P. Glacial erosion at the fiord onset zone and implications for the organization of ice flow on Baffin Island, Arctic Canada. Geomorphology 97, 126–134 (2008).

    Article  Google Scholar 

  22. Andrews, J. T. & Barnett, D. M. Holocene (Neoglacial) moraine and proglacial lake chronology, Barnes Ice Cap, Canada. Boreas 8, 341–358 (1979).

    Article  Google Scholar 

  23. Benn, D. I., Warren, C. R. & Mottram, R. H. Calving processes and the dynamics of calving glaciers. Earth Sci. Rev. 82, 143–179 (2007).

    Article  Google Scholar 

  24. Axford, Y., Briner, J. P., Miller, G. H. & Francis, D. R. Paleoecological evidence for abrupt cold reversals during peak Holocene warmth on Baffin Island, Arctic Canada. Quat. Res. 71, 142–149 (2009).

    Article  Google Scholar 

  25. Dyke, A. S., Dale, J. E. & McNeely, R. N. Marine molluscs as indicators of environmental change in glaciated North America and Greenland during the last 18,000 years. Geog. Phys. Quat. 50, 125–184 (1996).

    Google Scholar 

  26. Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geosci. 1, 659–664 (2008).

    Article  Google Scholar 

  27. Scambos, T. A., Bohlander, J. A., Shuman, C. A. & Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 31, L18402 (2004).

    Article  Google Scholar 

  28. Pfeffer, W. T., Harper, J. T. & O’Neel, S. Kinematic constraints on glacier contributions to 21st century sea-level rise. Science 321, 1340–1343 (2008).

    Article  Google Scholar 

  29. Balco, G., Stone, J., Lifton, N. & Dunai, T. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochron. 3, 174–195 (2008).

    Article  Google Scholar 

  30. Balco, G. et al. Regional beryllium-10 production rate calibration for late-glacial northeastern North America. Quat. Geochron. 4, 93–107 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

We express sincere thanks to many people who helped this project along the way: J. Qillaq of Clyde River; R. Finkel and D. Rood at Lawrence Livermore National Laboratory; M. Caffee and others at PRIME Lab; T. Bank, B. Csatho, L. Håkansson, E. Thomas and N. Young in the Department of Geology, University at Buffalo; S. Lehman and C. Wolak at the INSTAAR Laboratory for AMS Radiocarbon Preparation and Research. This project was financially supported by NSF grant EAR-0644966.

Author information

Authors and Affiliations

Authors

Contributions

J.P.B. and R.S.A. instigated and directed this research. All authors participated in fieldwork and designed the field sampling strategy. A.C.B. carried out all sample processing and initial data interpretation. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Jason P. Briner.

Supplementary information

Supplementary Information

Supplementary Information (PDF 329 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Briner, J., Bini, A. & Anderson, R. Rapid early Holocene retreat of a Laurentide outlet glacier through an Arctic fjord. Nature Geosci 2, 496–499 (2009). https://doi.org/10.1038/ngeo556

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo556

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing