Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Active DNA demethylation at enhancers during the vertebrate phylotypic period

Abstract

The vertebrate body plan and organs are shaped during a conserved embryonic phase called the phylotypic stage. However, the mechanisms that guide the epigenome through this transition and their evolutionary conservation remain elusive. Here we report widespread DNA demethylation of enhancers during the phylotypic period in zebrafish, Xenopus tropicalis and mouse. These enhancers are linked to developmental genes that display coordinated transcriptional and epigenomic changes in the diverse vertebrates during embryogenesis. Binding of Tet proteins to (hydroxy)methylated DNA and enrichment of 5-hydroxymethylcytosine in these regions implicated active DNA demethylation in this process. Furthermore, loss of function of Tet1, Tet2 and Tet3 in zebrafish reduced chromatin accessibility and increased methylation levels specifically at these enhancers, indicative of DNA methylation being an upstream regulator of phylotypic enhancer function. Overall, our study highlights a regulatory module associated with the most conserved phase of vertebrate embryogenesis and suggests an ancient developmental role for Tet dioxygenases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DNA methylome dynamics during vertebrate embryogenesis and the phylotypic stage.
Figure 2: Phylo(−)DMRs are developmentally activated enhancers associated with vertebrate body plan formation.
Figure 3: Active demethylation components bind 5mC and 5hmC during the phylotypic period in vertebrates.
Figure 4: Phylo(−)DMRs are characterized by 5hmC enrichment in vertebrate embryos.
Figure 5: Tet proteins are required for phylo(−)DMR demethylation and body plan formation in zebrafish.

Similar content being viewed by others

Accession codes

Primary accessions

Gene Expression Omnibus

Referenced accessions

Gene Expression Omnibus

References

  1. Bird, A. DNA methylation patterns and epigenetic memory. Genes Dev. 16, 6–21 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Santos, F., Hendrich, B., Reik, W. & Dean, W. Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev. Biol. 241, 172–182 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Borgel, J. et al. Targets and dynamics of promoter DNA methylation during early mouse development. Nat. Genet. 42, 1093–1100 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Andersen, I.S., Reiner, A.H., Aanes, H., Aleström, P. & Collas, P. Developmental features of DNA methylation during activation of the embryonic zebrafish genome. Genome Biol. 13, R65 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith, Z.D. et al. A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484, 339–344 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang, L. et al. Sperm, but not oocyte, DNA methylome is inherited by zebrafish early embryos. Cell 153, 773–784 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Potok, M.E., Nix, D.A., Parnell, T.J. & Cairns, B.R. Reprogramming the maternal zebrafish genome after fertilization to match the paternal methylation pattern. Cell 153, 759–772 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wang, L. et al. Programming and inheritance of parental DNA methylomes in mammals. Cell 157, 979–991 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Seisenberger, S. et al. Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Phil. Trans. R. Soc. Lond. B 368, 20110330 (2013).

    Article  CAS  Google Scholar 

  10. Lee, M.T., Bonneau, A.R. & Giraldez, A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 30, 581–613 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Domazet-Lošo, T. & Tautz, D. A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature 468, 815–818 (2010).

    Article  PubMed  CAS  Google Scholar 

  12. Irie, N. & Kuratani, S. Comparative transcriptome analysis reveals vertebrate phylotypic period during organogenesis. Nat. Commun. 2, 248 (2011).

    Article  PubMed  CAS  Google Scholar 

  13. Kalinka, A.T. et al. Gene expression divergence recapitulates the developmental hourglass model. Nature 468, 811–814 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Cokus, S.J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lister, R. et al. Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133, 523–536 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, M. et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149, 1368–1380 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Spruijt, C.G. et al. Dynamic readers for 5-(hydroxy)methylcytosine and its oxidized derivatives. Cell 152, 1146–1159 (2013).

    Article  CAS  PubMed  Google Scholar 

  18. Oswald, J. et al. Active demethylation of the paternal genome in the mouse zygote. Curr. Biol. 10, 475–478 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Smith, Z.D. et al. DNA methylation dynamics of the human preimplantation embryo. Nature 511, 611–615 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guo, H. et al. The DNA methylation landscape of human early embryos. Nature 511, 606–610 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Lister, R. et al. Global epigenomic reconfiguration during mammalian brain development. Science 341, 1237905 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. McLean, C.Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dutton, K.A. et al. Zebrafish colourless encodes sox10 and specifies non-ectomesenchymal neural crest fates. Development 128, 4113–4125 (2001).

    CAS  PubMed  Google Scholar 

  24. Stadler, M.B. et al. DNA-binding factors shape the mouse methylome at distal regulatory regions. Nature 480, 490–495 (2011).

    CAS  PubMed  Google Scholar 

  25. Hon, G.C. et al. Epigenetic memory at embryonic enhancers identified in DNA methylation maps from adult mouse tissues. Nat. Genet. 45, 1198–1206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bogdanovic, O. et al. Dynamics of enhancer chromatin signatures mark the transition from pluripotency to cell specification during embryogenesis. Genome Res. 22, 2043–2053 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shen, Y. et al. A map of the cis-regulatory sequences in the mouse genome. Nature 488, 116–120 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hontelez, S. et al. Embryonic transcription is controlled by maternally defined chromatin state. Nat. Commun. 6, 10148 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. Creyghton, M.P. et al. Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc. Natl. Acad. Sci. USA 107, 21931–21936 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. Illingworth, R.S. et al. Orphan CpG islands identify numerous conserved promoters in the mammalian genome. PLoS Genet. 6, e1001134 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Long, H.K. et al. Epigenetic conservation at gene regulatory elements revealed by non-methylated DNA profiling in seven vertebrates. eLife 2, e00348 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cohen, N.M., Kenigsberg, E. & Tanay, A. Primate CpG islands are maintained by heterogeneous evolutionary regimes involving minimal selection. Cell 145, 773–786 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Krebs, A.R., Dessus-Babus, S., Burger, L. & Schübeler, D. High-throughput engineering of a mammalian genome reveals building principles of methylation states at CG rich regions. eLife 3, e04094 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Wachter, E. et al. Synthetic CpG islands reveal DNA sequence determinants of chromatin structure. eLife 3, e03397 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Visel, A., Minovitsky, S., Dubchak, I. & Pennacchio, L.A. VISTA Enhancer Browser—a database of tissue-specific human enhancers. Nucleic Acids Res. 35, D88–D92 (2007).

    Article  CAS  PubMed  Google Scholar 

  38. Visel, A. et al. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457, 854–858 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huang, W., Sherman, B.T. & Lempicki, R.A. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res. 37, 1–13 (2009).

    Article  CAS  Google Scholar 

  40. Huang, W., Sherman, B.T. & Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  41. Pauli, A. et al. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis. Genome Res. 22, 577–591 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paranjpe, S.S., Jacobi, U.G., van Heeringen, S.J. & Veenstra, G.J. A genome-wide survey of maternal and embryonic transcripts during Xenopus tropicalis development. BMC Genomics 14, 762 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Auclair, G., Guibert, S., Bender, A. & Weber, M. Ontogeny of CpG island methylation and specificity of DNMT3 methyltransferases during embryonic development in the mouse. Genome Biol. 15, 545 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Shen, L. et al. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes. Cell Stem Cell 15, 459–470 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Siepel, A. et al. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15, 1034–1050 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Piasecka, B., Lichocki, P., Moretti, S., Bergmann, S. & Robinson-Rechavi, M. The hourglass and the early conservation models—co-existing patterns of developmental constraints in vertebrates. PLoS Genet. 9, e1003476 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Nord, A.S. et al. Rapid and pervasive changes in genome-wide enhancer usage during mammalian development. Cell 155, 1521–1531 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Stergachis, A.B. et al. Developmental fate and cellular maturity encoded in human regulatory DNA landscapes. Cell 154, 888–903 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Barreto, G. et al. Gadd45a promotes epigenetic gene activation by repair-mediated DNA demethylation. Nature 445, 671–675 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Rai, K. et al. DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and Gadd45. Cell 135, 1201–1212 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Almeida, R.D. et al. 5-hydroxymethyl-cytosine enrichment of non-committed cells is not a universal feature of vertebrate development. Epigenetics 7, 383–389 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Kamstra, J.H., Løken, M., Aleström, P. & Legler, J. Dynamics of DNA hydroxymethylation in zebrafish. Zebrafish 12, 230–237 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Williams, K. et al. TET1 and hydroxymethylcytosine in transcription and DNA methylation fidelity. Nature 473, 343–348 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wu, H. et al. Dual functions of Tet1 in transcriptional regulation in mouse embryonic stem cells. Nature 473, 389–393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xu, Y. et al. Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for Xenopus eye and neural development. Cell 151, 1200–1213 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ge, L. et al. TET2 plays an essential role in erythropoiesis by regulating lineage-specific genes via DNA oxidative demethylation in a zebrafish model. Mol. Cell. Biol. 34, 989–1002 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Li, C. et al. Overlapping requirements for Tet2 and Tet3 in normal development and hematopoietic stem cell emergence. Cell Rep. 12, 1133–1143 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buenrostro, J.D., Giresi, P.G., Zaba, L.C., Chang, H.Y. & Greenleaf, W.J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Vastenhouw, N.L. et al. Chromatin signature of embryonic pluripotency is established during genome activation. Nature 464, 922–926 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lindeman, L.C. et al. Prepatterning of developmental gene expression by modified histones before zygotic genome activation. Dev. Cell 21, 993–1004 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Lee, H.J. et al. Developmental enhancers revealed by extensive DNA methylome maps of zebrafish early embryos. Nat. Commun. 6, 6315 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Perera, A. et al. TET3 is recruited by REST for context-specific hydroxymethylation and induction of gene expression. Cell Rep. 11, 283–294 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Ding, J. et al. Tex10 coordinates epigenetic control of super-enhancer activity in pluripotency and reprogramming. Cell Stem Cell 16, 653–668 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gu, T.P. et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477, 606–610 (2011).

    Article  CAS  PubMed  Google Scholar 

  66. Dawlaty, M.M. et al. Tet1 is dispensable for maintaining pluripotency and its loss is compatible with embryonic and postnatal development. Cell Stem Cell 9, 166–175 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Ko, M. et al. Ten-Eleven-Translocation 2 (TET2) negatively regulates homeostasis and differentiation of hematopoietic stem cells in mice. Proc. Natl. Acad. Sci. USA 108, 14566–14571 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Moran-Crusio, K. et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20, 11–24 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dawlaty, M.M. et al. Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev. Cell 24, 310–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S.L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Schultz, M.D. et al. Human body epigenome maps reveal noncanonical DNA methylation variation. Nature 523, 212–216 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Quinlan, A.R. & Hall, I.M. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bray, N., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal RNA-Seq quantification. arXiv http://arxiv.org/abs/1505.02710 (2015).

  75. Vilella, A.J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  PubMed  Google Scholar 

  78. Schwanhäusser, B. et al. Global quantification of mammalian gene expression control. Nature 473, 337–342 (2011).

    Article  PubMed  CAS  Google Scholar 

  79. Wis´niewski, J.R., Zougman, A. & Mann, M. Combination of FASP and StageTip-based fractionation allows in-depth analysis of the hippocampal membrane proteome. J. Proteome Res. 8, 5674–5678 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Secco and A. De Mendoza for critical reading of the manuscript. Spanish and Andalusian government grants BFU2013-41322-P and BIO-396 to J.L.G.-S. supported this work. R.L. was supported by an Australian Research Council Future Fellowship (FT120100862) and a Sylvia and Charles Viertel Senior Medical Research Fellowship, and work in the laboratory of R.L. was funded by the Australian Research Council, National Health and Medical Research Council, and the Raine Medical Research Foundation. O.B. is supported by an Australian Research Council Discovery Early Career Researcher Award (DECRA; DE140101962). The laboratory of M.V. is supported by grants from the Netherlands Organisation for Scientific Research (NWO-VIDI; 864.09.003) and Cancer Genomics Netherlands, a European Research Council starting grant (309384) and the European Union Framework Programme 7 Network of Excellence EpiGeneSys. J.R.E. was supported by the Gordon and Betty Moore Foundation (GBMF3034) and is an Investigator of the Howard Hughes Medical Institute. Work in the laboratory of M.M. is funded by grants from the Ministerio de Economia y Competitividad (BFU2011-23083), Comunidad Autónoma de Madrid (CELLDD-CM), and by the Pro-CNIC Foundation. This work has been supported by a grant from the US National Institutes of Health (National Institute of Child Health and Human Development, grant R01HD069344) to G.J.C.V.

Author information

Authors and Affiliations

Authors

Contributions

O.B., M.V., J.L.G.-S. and R.L. designed the study. O.B. and E.F. prepared and sequenced MethylC-seq libraries. The data were analyzed by O.B. with the help of R.L., E.F., M.D.S. and J.R.E. Embryo work was performed by O.B., E.d.l.C.M., J.J.T., T.R., M.M. and J.L.G.-S. The zebrafish sox10 line was prepared by R.W., U.S. and T.S.-S. Xenopus ChIP-seq data were generated by S.H., I.v.K. and G.J.C.V. Quantitative interaction proteomics experiments were performed by A.H.S., F.G., T.C. and M.V. Proteomics data were analyzed by A.H.S. and M.V. The manuscript was written by O.B., A.H.S., M.V., J.L.G.-S. and R.L.

Corresponding authors

Correspondence to Ozren Bogdanović, Michiel Vermeulen, José Luis Gómez-Skarmeta or Ryan Lister.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–18. (PDF 2738 kb)

Supplementary Table 1

Overview of MethylC-seq, TAB-seq and ATAC-seq data used in this study. (XLSX 11 kb)

Supplementary Tables 2–5

Genomic positions and directionality of DMRs. (XLSX 17421 kb)

Supplementary Tables 6–20

Genomic positions of DMRs (FDR = 0.05 and minimum ΔmCG = 0.2). (XLSX 11756 kb)

Supplementary Tables 21 and 22

Conserved gene ontology enrichments. (XLSX 23 kb)

Supplementary Table 23

Genomic positions of VISTA enhancers overlapping phylo(–)DMRs identified in mouse and zebrafish. (XLSX 9 kb)

Supplementary Table 24

Orthologous genes associated with phylo(–)DMRs in zebrafish, Xenopus and mouse. (XLSX 11 kb)

Supplementary Tables 25 and 26

Label-free quantification (LFQ) intensities for zebrafish dome and 24 h.p.f. samples. (XLSX 380 kb)

Supplementary Table 27

Differentially expressed genes in the tet1-tet2-tet3 morphant. (XLSX 173 kb)

Supplementary Table 28

Morpholino and DNA methylation pulldown bait sequences used in this study. (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogdanović, O., Smits, A., de la Calle Mustienes, E. et al. Active DNA demethylation at enhancers during the vertebrate phylotypic period. Nat Genet 48, 417–426 (2016). https://doi.org/10.1038/ng.3522

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3522

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing