Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Common variants associated with general and MMR vaccine–related febrile seizures

Abstract

Febrile seizures represent a serious adverse event following measles, mumps and rubella (MMR) vaccination. We conducted a series of genome-wide association scans comparing children with MMR-related febrile seizures, children with febrile seizures unrelated to vaccination and controls with no history of febrile seizures. Two loci were distinctly associated with MMR-related febrile seizures, harboring the interferon-stimulated gene IFI44L (rs273259: P = 5.9 × 10−12 versus controls, P = 1.2 × 10−9 versus MMR-unrelated febrile seizures) and the measles virus receptor CD46 (rs1318653: P = 9.6 × 10−11 versus controls, P = 1.6 × 10−9 versus MMR-unrelated febrile seizures). Furthermore, four loci were associated with febrile seizures in general, implicating the sodium channel genes SCN1A (rs6432860: P = 2.2 × 10−16) and SCN2A (rs3769955: P = 3.1 × 10−10), a TMEM16 family gene (ANO3; rs114444506: P = 3.7 × 10−20) and a region associated with magnesium levels (12q21.33; rs11105468: P = 3.4 × 10−11). Finally, we show the functional relevance of ANO3 (TMEM16C) with electrophysiological experiments in wild-type and knockout rats.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Discovery-stage results from the MMR-related febrile seizures versus controls scan.
Figure 2: Discovery-stage results from the febrile seizures overall versus controls scan.
Figure 3: ANO3 is involved in the temperature response of hypothalamic neurons.
Figure 4: Hippocampal CA1 pyramidal neurons exhibit hyperexcitability in the absence of ANO3.

Similar content being viewed by others

References

  1. Barlow, W.E. et al. The risk of seizures after receipt of whole-cell pertussis or measles, mumps, and rubella vaccine. N. Engl. J. Med. 345, 656–661 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Vestergaard, M. et al. MMR vaccination and febrile seizures: evaluation of susceptible subgroups and long-term prognosis. J. Am. Med. Assoc. 292, 351–357 (2004).

    Article  CAS  Google Scholar 

  3. Stafstrom, C.E. in Febrile Seizures (eds. Baram, T.Z. & Shinnar, S.) 1–25 (Academic Press, San Diego, 2002).

  4. Millichap, J.G. & Millichap, J.J. Role of viral infections in the etiology of febrile seizures. Pediatr. Neurol. 35, 165–172 (2006).

    Article  PubMed  Google Scholar 

  5. Helbig, I., Scheffer, I.E., Mulley, J.C. & Berkovic, S.F. Navigating the channels and beyond: unravelling the genetics of the epilepsies. Lancet Neurol. 7, 231–245 (2008).

    Article  PubMed  Google Scholar 

  6. Poduri, A. & Lowenstein, D. Epilepsy genetics—past, present, and future. Curr. Opin. Genet. Dev. 21, 325–332 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sadleir, L.G. & Scheffer, I.E. Febrile seizures. Br. Med. J. 334, 307–311 (2007).

    Article  Google Scholar 

  8. Hauser, W.A., Annegers, J.F., Anderson, V.E. & Kurland, L.T. The risk of seizure disorders among relatives of children with febrile convulsions. Neurology 35, 1268–1273 (1985).

    Article  CAS  PubMed  Google Scholar 

  9. Eckhaus, J. et al. Genetics of febrile seizure subtypes and syndromes: a twin study. Epilepsy Res. 105, 103–109 (2013).

    Article  PubMed  Google Scholar 

  10. Kjeldsen, M.J., Kyvik, K.O., Friis, M.L. & Christensen, K. Genetic and environmental factors in febrile seizures: a Danish population-based twin study. Epilepsy Res. 51, 167–177 (2002).

    Article  PubMed  Google Scholar 

  11. Lappalainen, T. et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Westra, H.J. et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zilliox, M.J., Parmigiani, G. & Griffin, D.E. Gene expression patterns in dendritic cells infected with measles virus compared with other pathogens. Proc. Natl. Acad. Sci. USA 103, 3363–3368 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schoggins, J.W. et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 472, 481–485 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dhiman, N. et al. Variations in measles vaccine–specific humoral immunity by polymorphisms in SLAM and CD46 measles virus receptors. J. Allergy Clin. Immunol. 120, 666–672 (2007).

    Article  CAS  PubMed  Google Scholar 

  16. Kennedy, R.B. et al. Multigenic control of measles vaccine immunity mediated by polymorphisms in measles receptor, innate pathway, and cytokine genes. Vaccine 30, 2159–2167 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clifford, H.D. et al. CD46 measles virus receptor polymorphisms influence receptor protein expression and primary measles vaccine responses in naive Australian children. Clin. Vaccine Immunol. 19, 704–710 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ovsyannikova, I.G. et al. The association of CD46, SLAM and CD209 cellular receptor gene SNPs with variations in measles vaccine–induced immune responses: a replication study and examination of novel polymorphisms. Hum. Hered. 72, 206–223 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kemper, C. et al. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421, 388–392 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Dörig, R.E., Marcil, A., Chopra, A. & Richardson, C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75, 295–305 (1993).

    Article  PubMed  Google Scholar 

  21. Naniche, D. et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 67, 6025–6032 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Ono, N. et al. Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J. Virol. 75, 4399–4401 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas, E.A. et al. Heat opens axon initial segment sodium channels: a febrile seizure mechanism? Ann. Neurol. 66, 219–226 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Heron, S.E. et al. Sodium-channel defects in benign familial neonatal-infantile seizures. Lancet 360, 851–852 (2002).

    Article  CAS  PubMed  Google Scholar 

  25. Liao, Y. et al. Molecular correlates of age-dependent seizures in an inherited neonatal-infantile epilepsy. Brain 133, 1403–1414 (2010).

    Article  PubMed  Google Scholar 

  26. Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kasperaviciute, D. et al. Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A. Brain 136, 3140–3150 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Heinzen, E.L. et al. Nova2 interacts with a cis-acting polymorphism to influence the proportions of drug-responsive splice variants of SCN1A. Am. J. Hum. Genet. 80, 876–883 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ogiwara, I. et al. Nav1.1 localizes to axons of parvalbumin-positive inhibitory interneurons: a circuit basis for epileptic seizures in mice carrying an Scn1a gene mutation. J. Neurosci. 27, 5903–5914 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rossignol, E. Genetics and function of neocortical GABAergic interneurons in neurodevelopmental disorders. Neural Plast. 2011, 649325 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duran, C. & Hartzell, H.C. Physiological roles and diseases of Tmem16/Anoctamin proteins: are they all chloride channels? Acta Pharmacol. Sin. 32, 685–692 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charlesworth, G. et al. Mutations in ANO3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am. J. Hum. Genet. 91, 1041–1050 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huang, F. et al. TMEM16C facilitates Na+-activated K+ currents in rat sensory neurons and regulates pain processing. Nat. Neurosci. 16, 1284–1290 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Meyer, T.E. et al. Genome-wide association studies of serum magnesium, potassium, and sodium concentrations identify six loci influencing serum magnesium levels. PLoS Genet. 6, e1001045 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Kruse, H.D., Orent, E.R. & McCollum, E.V. Studies on magnesium deficiency in animals. I. Symptomatology resulting from magnesium deprivation. J. Biol. Chem. 96, 519–539 (1932).

    Google Scholar 

  36. Hanna, S., Harrison, M., MacIntyre, I. & Fraser, R. The syndrome of magnesium deficiency in man. Lancet 2, 172–176 (1960).

    Article  CAS  PubMed  Google Scholar 

  37. Anderson, W.W., Lewis, D.V., Swartzwelder, H.S. & Wilson, W.A. Magnesium-free medium activates seizure-like events in the rat hippocampal slice. Brain Res. 398, 215–219 (1986).

    Article  CAS  PubMed  Google Scholar 

  38. Ghasemi, M. & Schachter, S.C. The NMDA receptor complex as a therapeutic target in epilepsy: a review. Epilepsy Behav. 22, 617–640 (2011).

    Article  PubMed  Google Scholar 

  39. Boulant, J.A. Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin. Infect. Dis. 31 (suppl. 5), S157–S161 (2000).

    Article  PubMed  Google Scholar 

  40. Sugiura, Y., Ogiwara, I., Hoshi, A., Yamakawa, K. & Ugawa, Y. Different degrees of loss of function between GEFS+ and SMEI Nav1.1 missense mutants at the same residue induced by rescuable folding defects. Epilepsia 53, e111–e114 (2012).

    Article  CAS  PubMed  Google Scholar 

  41. Martin, M.S. et al. Altered function of the SCN1A voltage-gated sodium channel leads to γ-aminobutyric acid-ergic (GABAergic) interneuron abnormalities. J. Biol. Chem. 285, 9823–9834 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Turner, T.L., Cockburn, F. & Forfar, J.O. Magnesium therapy in neonatal tetany. Lancet 1, 283–284 (1977).

    Article  CAS  PubMed  Google Scholar 

  43. Euser, A.G. & Cipolla, M.J. Magnesium sulfate for the treatment of eclampsia: a brief review. Stroke 40, 1169–1175 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yuen, A.W. & Sander, J.W. Can magnesium supplementation reduce seizures in people with epilepsy? A hypothesis. Epilepsy Res. 100, 152–156 (2012).

    Article  CAS  PubMed  Google Scholar 

  45. Abdelmalik, P.A., Politzer, N. & Carlen, P.L. Magnesium as an effective adjunct therapy for drug resistant seizures. Can. J. Neurol. Sci. 39, 323–327 (2012).

    Article  PubMed  Google Scholar 

  46. Barcia, G. et al. De novo gain-of-function KCNT1 channel mutations cause malignant migrating partial seizures of infancy. Nat. Genet. 44, 1255–1259 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Heron, S.E. et al. Missense mutations in the sodium-gated potassium channel gene KCNT1 cause severe autosomal dominant nocturnal frontal lobe epilepsy. Nat. Genet. 44, 1188–1190 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Wray, N.R., Purcell, S.M. & Visscher, P.M. Synthetic associations created by rare variants do not explain most GWAS results. PLoS Biol. 9, e1000579 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tsuboi, T. Epidemiology of febrile and afebrile convulsions in children in Japan. Neurology 34, 175–181 (1984).

    Article  CAS  PubMed  Google Scholar 

  50. Lynge, E., Sandegaard, J.L. & Rebolj, M. The Danish National Patient Register. Scand. J. Public Health 39, 30–33 (2011).

    Article  PubMed  Google Scholar 

  51. Vestergaard, M. et al. The Danish National Hospital Register is a valuable study base for epidemiologic research in febrile seizures. J. Clin. Epidemiol. 59, 61–66 (2006).

    Article  PubMed  Google Scholar 

  52. Knudsen, L.B. & Olsen, J. The Danish Medical Birth Registry. Dan. Med. Bull. 45, 320–323 (1998).

    CAS  PubMed  Google Scholar 

  53. Hviid, A. Postlicensure epidemiology of childhood vaccination: the Danish experience. Expert Rev. Vaccines 5, 641–649 (2006).

    Article  PubMed  Google Scholar 

  54. Olsen, J. et al. The Danish National Birth Cohort—its background, structure and aim. Scand. J. Public Health 29, 300–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  55. Pedersen, C.B., Gotzsche, H., Moller, J.O. & Mortensen, P.B. The Danish Civil Registration System. A cohort of eight million persons. Dan. Med. Bull. 53, 441–449 (2006).

    PubMed  Google Scholar 

  56. Hollegaard, M.V. et al. Genome-wide scans using archived neonatal dried blood spot samples. BMC Genomics 10, 297 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010).

  58. Delaneau, O., Marchini, J. & Zagury, J.F. A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2012).

    Article  CAS  Google Scholar 

  59. Howie, B.N., Donnelly, P. & Marchini, J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Marchini, J. & Howie, B. Genotype imputation for genome-wide association studies. Nat. Rev. Genet. 11, 499–511 (2010).

    Article  CAS  PubMed  Google Scholar 

  61. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  PubMed  Google Scholar 

  62. Higgins, J.P. & Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 21, 1539–1558 (2002).

    Article  PubMed  Google Scholar 

  63. Willer, C.J., Li, Y. & Abecasis, G.R. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 26, 2190–2191 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Purcell, S., Cherny, S.S. & Sham, P.C. Genetic Power Calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19, 149–150 (2003).

    CAS  PubMed  Google Scholar 

  65. Schwarz, J.M., Rodelsperger, C., Schuelke, M. & Seelow, D. MutationTaster evaluates disease-causing potential of sequence alterations. Nat. Methods 7, 575–576 (2010).

    Article  CAS  PubMed  Google Scholar 

  66. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Schoggins, J.W. et al. Dengue reporter viruses reveal viral dynamics in interferon receptor–deficient mice and sensitivity to interferon effectors in vitro. Proc. Natl. Acad. Sci. USA 109, 14610–14615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dupuis, S. et al. Impaired response to interferon-α/β and lethal viral disease in human STAT1 deficiency. Nat. Genet. 33, 388–391 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The study was partially supported by a grant from the Danish Medical Research Council (0602-01818B). Research reported in this publication was supported by US National Institutes of Health (NIH)/National Institute of Allergy and Infectious Diseases grant R01AI093697 (A.H.), by NIH/National Institute of Diabetes and Digestive and Kidney Diseases grant K01DK095031 (J.W.S.) and by NIH/National Institute of Neurological Disorders and Stroke grant R01NS069229 (L.Y.J.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH. The Danish National Biobank was established with the support of major grants from the Novo Nordisk Foundation, the Danish Medical Research Council and the Lundbeck Foundation. L.Y.J. is an investigator of the Howard Hughes Medical Institute. B.F. is supported by an Oak Foundation fellowship.

Author information

Authors and Affiliations

Authors

Contributions

B.F., B.P., F.G., M.M. and A.H. designed the project and drafted the manuscript. B.P., H.S., M.V. and A.H. planned and performed register data acquisition, informatics and phenotypic characterization. B.F., F.G. and L.C. carried out the statistical genetics and bioinformatics analyses. M.V.H. and D.M.H. performed sampling, whole-genome amplification and genotyping. J.L.E. and J.W.S. designed and performed the cell-based overexpression experiments and analyzed the data. T.W., F.H. and L.Y.J. designed and performed the electrophysiology experiments and analyzed the data. All authors contributed to the final manuscript.

Corresponding author

Correspondence to Bjarke Feenstra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8 and Supplementary Tables 1, 4, 5, 7 and 8. (PDF 3303 kb)

Supplementary Tables 2, 3 and 6.

Supplementary Tables 2, 3 and 6. (XLSX 69 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feenstra, B., Pasternak, B., Geller, F. et al. Common variants associated with general and MMR vaccine–related febrile seizures. Nat Genet 46, 1274–1282 (2014). https://doi.org/10.1038/ng.3129

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.3129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing