Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations

Abstract

Pancreatic cancer has the lowest survival rate among human cancers, and there are no effective markers for its screening and early diagnosis. To identify genetic susceptibility markers for this cancer, we carried out a genome-wide association study on 981 individuals with pancreatic cancer (cases) and 1,991 cancer-free controls of Chinese descent using 666,141 autosomal SNPs. Promising associations were replicated in an additional 2,603 pancreatic cancer cases and 2,877 controls recruited from 25 hospitals in 16 provinces or cities in China. We identified five new susceptibility loci at chromosomes 21q21.3, 5p13.1, 21q22.3, 22q13.32 and 10q26.11 (P = 2.24 × 10−13 to P = 4.18 × 10−10) in addition to 13q22.1 previously reported in populations of European ancestry. These results advance our understanding of the development of pancreatic cancer and highlight potential targets for the prevention or treatment of this cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Manhattan plot of genome-wide P values of association.
Figure 2: Regional plots of association results and recombination rates within six significantly associated susceptibility loci .
Figure 3: Odds ratio for pancreatic cancer versus number of risk genotypes.

Similar content being viewed by others

References

  1. Li, D., Xie, K., Wolff, R. & Abbruzzese, J.L. Pancreatic cancer. Lancet 363, 1049–1057 (2004).

    Article  CAS  Google Scholar 

  2. Klein, A.P. et al. Familial pancreatic cancer. Cancer J. 7, 266–273 (2001).

    CAS  PubMed  Google Scholar 

  3. Petersen, G.M. et al. A genome-wide association study identifies pancreatic cancer susceptibility loci on chromosomes 13q22.1, 1q32.1 and 5p15.33. Nat. Genet. 42, 224–228 (2010).

    Article  CAS  Google Scholar 

  4. Amundadottir, L. et al. Genome-wide association study identifies variants in the ABO locus associated with susceptibility to pancreatic cancer. Nat. Genet. 41, 986–990 (2009).

    Article  CAS  Google Scholar 

  5. Low, S.K. et al. Genome-wide association study of pancreatic cancer in Japanese population. PLoS ONE 5, e11824 (2010).

    Article  Google Scholar 

  6. Wolpin, B.M. et al. ABO blood group and the risk of pancreatic cancer. J. Natl. Cancer Inst. 101, 424–431 (2009).

    Article  CAS  Google Scholar 

  7. Wolpin, B.M. et al. Pancreatic cancer risk and ABO blood group alleles: results from the pancreatic cancer cohort consortium. Cancer Res. 70, 1015–1023 (2010).

    Article  CAS  Google Scholar 

  8. Iodice, S. et al. ABO blood group and cancer. Eur. J. Cancer 46, 3345–3350 (2010).

    Article  CAS  Google Scholar 

  9. Ben, Q., Wang, K., Yuan, Y. & Li, Z. Pancreatic cancer incidence and outcome in relation to ABO blood groups among Han Chinese patients: a case-control study. Int. J. Cancer 128, 1179–1186 (2011).

    Article  CAS  Google Scholar 

  10. Nakao, M. et al. ABO blood group alleles and the risk of pancreatic cancer in a Japanese population. Cancer Sci. 102, 1076–1080 (2011).

    Article  CAS  Google Scholar 

  11. Sun, J. et al. Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J. 21, 5216–5224 (2002).

    Article  CAS  Google Scholar 

  12. Reichard, J.F., Sartor, M.A. & Puga, A. BACH1 is a specific repressor of HMOX1 that is inactivated by arsenite. J. Biol. Chem. 283, 22363–22370 (2008).

    Article  CAS  Google Scholar 

  13. Vijayan, V., Mueller, S., Baumgart-Vogt, E. & Immenschuh, S. Heme oxygenase-1 as a therapeutic target in inflammatory disorders of the gastrointestinal tract. World J. Gastroenterol. 16, 3112–3119 (2010).

    Article  CAS  Google Scholar 

  14. Zhu, X. et al. Heme oxygenase-1 system and gastrointestinal tumors. World J. Gastroenterol. 16, 2633–2637 (2010).

    Article  CAS  Google Scholar 

  15. Harusato, A. et al. Inhibition of Bach1 ameliorates indomethacin-induced intestinal injury in mice. J. Physiol. Pharmacol. 60 (suppl. 7), 149–154 (2009).

    PubMed  Google Scholar 

  16. Iida, A. et al. Bach1 deficiency ameliorates hepatic injury in a mouse model. Tohoku J. Exp. Med. 217, 223–229 (2009).

    Article  CAS  Google Scholar 

  17. Fazili, Z. et al. Loss of Disabled-2 is an early step in ovarian tumorigenicity. Oncogene 18, 3104–3113 (1999).

    Article  CAS  Google Scholar 

  18. He, J., Smith, E.R. & Xu, X.X. Disabled-2 exerts its tumor suppressor activity by uncoupling c-Fos expression and MAP kinase activation. J. Biol. Chem. 276, 26814–26818 (2001).

    Article  CAS  Google Scholar 

  19. Hannigan, A. et al. Epigenetic downregulation of human disabled homolog 2 switches TGF-β from a tumor suppressor to a tumor promoter. J. Clin. Invest. 120, 2842–2857 (2010).

    Article  CAS  Google Scholar 

  20. Huang, Y. et al. Doc-2/hDab2 expression is up-regulated in primary pancreatic cancer but reduced in metastasis. Lab. Invest. 81, 863–873 (2001).

    Article  CAS  Google Scholar 

  21. Yang, D.H. et al. Disabled-2 heterozygous mice are predisposed to endometrial and ovarian tumorigenesis and exhibit sex-biased embryonic lethality in a p53-null background. Am. J. Pathol. 169, 258–267 (2006).

    Article  CAS  Google Scholar 

  22. Prunier, C. & Howe, P.H. Disabled-2 (Dab2) is required for transforming growth factor β-induced epithelial to mesenchymal transition (EMT). J. Biol. Chem. 280, 17540–17548 (2005).

    Article  CAS  Google Scholar 

  23. Chaudhury, A. et al. TGF-β-mediated phosphorylation of hnRNP E1 induced EMT via transcript-selective translational induction of Dab2 and ILEI. Nat. Cell Biol. 12, 286–293 (2010).

    Article  CAS  Google Scholar 

  24. Jiang, Y., Lou, W. & Howe, P.H. Dab2 stabilizes axin and attenuates Wnt/β-catenin signaling by preventing protein phosphatase 1(PP1)-axin interactions. Oncogene 28, 2999–3007 (2009).

    Article  CAS  Google Scholar 

  25. Pasca di Magliano, M. et al. Common activation of canonical Wnt signaling in pancreatic adenocarcinoma. PLoS ONE 2, e1155 (2007).

    Article  Google Scholar 

  26. Heiser, P.W. et al. Stabilization of β-catenin induces pancreas tumor formation. Gastroenterology 135, 1288–1300 (2008).

    Article  CAS  Google Scholar 

  27. Emami, S. et al. Trefoil factor family (TFF) peptide cancer progression. Peptides 25, 885–898 (2004).

    Article  CAS  Google Scholar 

  28. Ohshio, G. et al. Differential expression of human spasmolytic polypeptide (trefoil factor family-2) in pancreatic carcinoma, ampullary carcinoma, and mucin-producing tumors of the pancreas. Dig. Dis. Sci. 45, 659–664 (2000).

    Article  CAS  Google Scholar 

  29. Argani, P. et al. Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res. 61, 4320–4324 (2001).

    CAS  PubMed  Google Scholar 

  30. Yeh, T.S. et al. Characterisation of oestroge receptor, progesterone receptor, trefoil factor 1, and epidermal growth factor and its receptor in pancreatic cystic neoplasms and pancreatic ductal adenocarcinoma. Gut 51, 712–716 (2002).

    Article  CAS  Google Scholar 

  31. Dubeykovskaya, Z., Dubeykovskiy, A., Solal-Cohen, J. & Wang, T.C. Secreted trefoil factor 2 activates the CXCR4 receptor in epithelial and lymphocytic cancer cell lines. J. Biol. Chem. 284, 3650–3662 (2009).

    Article  CAS  Google Scholar 

  32. Díaz de Ståhl, T. et al. Chromosome 22 tiling-path array-CGH analysis identifies germ-line- and tumor-specific aberration in patients with glioblastoma multiforme. Genes Chromosom. Cancer 44, 161–169 (2005).

    Article  Google Scholar 

  33. Gu, W. et al. The prolactin-releasing peptide receptor (GPR10) regulates body weight homeostasis in mice. J. Mol. Neurosci. 22, 93–103 (2004).

    Article  Google Scholar 

  34. Bjursell, M. et al. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem. Biophys. Res. Commun. 363, 633–638 (2007).

    Article  CAS  Google Scholar 

  35. Li, D. et al. Body mass index and risk, age of onset, and survival in patients with pancreatic cancer. J. Am. Med. Assoc. 301, 2553–2562 (2009).

    Article  CAS  Google Scholar 

  36. Giovannucci, E. & Michaud, D. The role of obesity and related metabolic disturbances in cancers of the colon, prostate, and pancreas. Gastroenterology 132, 2208–2225 (2007).

    Article  CAS  Google Scholar 

  37. Jiao, L. et al. Body mass index, effect modifiers, and risk of pancreatic cancer: a pooled study of seven prospective cohorts. Cancer Causes Control 21, 1305–1314 (2010).

    Article  Google Scholar 

  38. Yang, M. et al. Functional variants in cell death pathway genes and risk of pancreatic cancer. Clin. Cancer Res. 14, 3230–3236 (2008).

    Article  CAS  Google Scholar 

  39. Zhao, D. et al. Interaction of cyclooxygenase-2 variants and smoking in pancreatic cancer: a possible role of nucleophosmin. Gastroenterology 136, 1659–1668 (2009).

    Article  CAS  Google Scholar 

  40. Dixon, A.L. et al. A genome-wide association study of global gene expression. Nat. Genet. 39, 1202–1207 (2007).

    Article  CAS  Google Scholar 

  41. Leek, J.T. & Storey, J.D. Capturing heterogeneity in gene expression studies by surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

    Article  CAS  Google Scholar 

  42. Abecasis, G.R., Cherny, S.S., Cookson, W.O. & Cardon, L.R. Merlin–rapid analysis of dense genetic maps using sparse gene flow trees. Nat. Genet. 30, 97–101 (2002).

    Article  CAS  Google Scholar 

  43. Chen, W.M. & Abecasis, G.R. Family-based association tests for genomewide association scans. Am. J. Hum. Genet. 81, 913–926 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National High-Tech Research and Development Program of China (2009AA022706) and the National Natural Science Foundation of China (81021061) to D.L. We thank L. Liang for help in eQTL analysis. We also thank the subjects and the surgeons who recruited them; M. Yang, L. Wang, X. Wang, C. Yang, L. Du, J. Li, F. Qi, X. Song and L. Zeng.

Author information

Authors and Affiliations

Authors

Contributions

D.L. conceived, designed and oversaw the study, obtained financial support, interpreted the results and wrote parts of and synthesized the paper. C. Wu managed the project, oversaw laboratory and statistical analyses and drafted the initial manuscript. Chengfeng Wang designed the study and oversaw pancreatic cancer patient recruitment. X.M. designed the study and carried out statistical analyses, subject recruitment and sample preparation of Zhejiang samples. L.H., K.Z., J.C. and J.X. prepared samples and did TaqMan genotyping. X.C., D.Y., Y.L., W.T. and P.Z. recruited subjects from Beijing, Shandong, Sichuan and Chongqing. Various authors recruited subjects and samples from Shanghai (G.J., G.C., X.Y., Z.L., L.L., M.S. and J.G.), Liaoning (X.Y., W.D., W.C. and Y.M.), Jiangsu (Z.H., H.S. and Yifeng Zhou), Fujian (Yongjian Zhou, Y.C., S.Z. and X. Zheng), Hunan (C.Z.), Hubei (Chunyou Wang and T.W.), Hebei (X. Zhang and Y.J.) and Hong Kong (X.W. and S.T.C.).

Corresponding authors

Correspondence to Chengfeng Wang or Dongxin Lin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–7 (PDF 641 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, C., Miao, X., Huang, L. et al. Genome-wide association study identifies five loci associated with susceptibility to pancreatic cancer in Chinese populations. Nat Genet 44, 62–66 (2012). https://doi.org/10.1038/ng.1020

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng.1020

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer