Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The genetics of variation in gene expression

Abstract

The genetic basis of variation in gene expression lends itself to investigation by microarrays. For genetic analysis, we view the expression level of a gene as a quantitative or 'complex' trait, analogous to an individual's height or cholesterol level, and, therefore, as an inherited phenotype. Several genetic analyses of 'gene expression phenotypes' have been carried out in experimental organisms, and initial steps have been taken toward similar studies in humans—although these present challenging technical and statistical problems. Further advances in the genetic analysis of variation in gene expression will contribute to our understanding of transcriptional regulation and will provide models for studying other quantitative and complex traits.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Microarray analysis of genetic variation.

Katie Ris

Similar content being viewed by others

References

  1. Brem, R.B., Yvert, G., Clinton, R. & Kruglyak, L. Genetic dissection of transcriptional regulation in budding yeast. Science 296, 752–755 (2002).

    Article  CAS  Google Scholar 

  2. Cavalieri, D., Townsend, J.P. & Hartl, D.L. Manifold anomalies in gene expression in a vineyard isolate of Saccharomyces cerevisiae revealed by DNA microarray analysis. Proc. Natl Acad. Sci. USA 97, 12369–12374 (2000).

    Article  CAS  Google Scholar 

  3. Steinmetz, L.M. et al. Dissecting the architecture of a quantitative trait locus in yeast. Nature 416, 326–330 (2002).

    Article  CAS  Google Scholar 

  4. Jin, W. et al. The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genet. 29, 389–395 (2001).

    Article  CAS  Google Scholar 

  5. Sandberg, R. et al. Regional and strain-specific gene expression mapping in the adult mouse brain. Proc. Natl Acad. Sci. USA 97, 11038–11043 (2000).

    Article  CAS  Google Scholar 

  6. Oleksiak, M.F., Churchill, G.A. & Crawford, D.L. Variation in gene expression within and among natural populations. Nature Genet. 32, 261–266 (2002).

    Article  CAS  Google Scholar 

  7. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002).

    Article  CAS  Google Scholar 

  8. Watts, J.A. et al. Gene expression phenotype in heterozygous carriers of ataxia telangiectasia. Am. J. Hum. Genet. 71, 791–800 (2002).

    Article  Google Scholar 

  9. Concannon, P. ATM heterozygosity and cancer risk. Nature Genet. 32, 89–90 (2002).

    Article  CAS  Google Scholar 

  10. Spring, K. et al. Mice heterozygous for mutation in Atm, the gene involved in ataxia-telangiectasia, have heightened susceptibility to cancer. Nature Genet. 32, 185–190 (2002).

    Article  CAS  Google Scholar 

  11. Cargill, M. et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nature Genet. 22, 231–238 (1999).

    Article  CAS  Google Scholar 

  12. Halushka, M.K. et al. Patterns of single-nucleotide polymorphisms in candidate genes for blood-pressure homeostasis. Nature Genet. 22, 239–247 (1999).

    Article  CAS  Google Scholar 

  13. Kruglyak, L. & Nickerson, D. Variation is the spice of life. Nature Genet. 27, 234–236 (2001).

    Article  CAS  Google Scholar 

  14. Gabriel, S.B. et al. The structure of haplotype blocks in the human genome. Science 296, 2225–2229 (2002).

    Article  CAS  Google Scholar 

  15. Dawson, E. et al. First-generation linkage disequilibrium map of human chromosome 22. Nature 418, 544–548 (2002).

    Article  CAS  Google Scholar 

  16. Daly, M.J., Rioux, J.D., Schaffner, S.F., Hudson, T.J. & Lander, E.S. High-resolution haplotype structure in the human genome. Nature Genet. 29, 229–232 (2001).

    Article  CAS  Google Scholar 

  17. Patil, N. et al. Blocks of limited haplotype diversity revealed by high-resolution scanning of human chromosome 21. Science 294, 1719–1723 (2001).

    Article  CAS  Google Scholar 

  18. Couzin, J. New mapping project splits the community. Science 296, 1391–1392 (2002).

    Article  CAS  Google Scholar 

  19. Ewens, W.J. & Spielman, R.S. Locating genes by linkage and association. Theor. Pop. Biol. 60, 135–139 (2001).

    Article  CAS  Google Scholar 

  20. Jorde, L.B. Linkage disequilibrium and the search for complex disease genes. Genome Res. 10, 1435–1444 (2000).

    Article  CAS  Google Scholar 

  21. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus. Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  Google Scholar 

  22. Thomson, G. Mapping disease genes: family-based association studies. Am. J. Hum. Genet. 57, 487–498 (1995).

    CAS  Google Scholar 

  23. Devlin, B. & Roeder, K. Genomic control for association studies. Biometrics 55, 997–1004 (1999).

    Article  CAS  Google Scholar 

  24. Pritchard, J.K., Stephens, M., Rosenberg, N.A. & Donnelly, P. Association mapping in structured populations. Am. J. Hum. Genet. 67, 170–181 (2000).

    Article  CAS  Google Scholar 

  25. Chen, X. & Kwok, P.Y. Template-directed dye-terminator incorporation (TDI) assay: a homogeneous DNA diagnostic method based on fluorescence resonance energy-transfer. Nucleic Acid Res. 25, 347–353 (1997).

    Article  Google Scholar 

  26. Wang, D.G. et al. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science 280, 1077–1082 (1998).

    Article  CAS  Google Scholar 

  27. Chen, X., Levine, L. & Kwok, P.Y. Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res. 9, 492–498 (1999).

    CAS  Google Scholar 

  28. Howell, W.M., Jobs, M., Gyllensten, U. & Brookes, A.J. Dynamic allele-specific hybridization. A new method for scoring single nucleotide polymorphisms. Nat. Biotechnol. 17, 87–88 (1999).

    Article  CAS  Google Scholar 

  29. Griffin, T.J., Hall, J.G., Prudent, J.R. & Smith, L.M. Direct genetic analysis by matrix-assisted laser desorption/ ionization mass spectrometry. Proc. Natl Acad. Sci. USA 96, 6301–6306 (1999).

    Article  CAS  Google Scholar 

  30. Lindblad-Toh, K. et al. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nature Genet. 24, 381–386 (2000).

    Article  CAS  Google Scholar 

  31. Fan, J.B. et al. Parallel genotyping of human SNPs using generic high-density oligonucleotide tag arrays. Genome Res. 10, 853–860 (2000).

    Article  CAS  Google Scholar 

  32. Oliphant, A., Barker, D.L., Stuelpnagel, J.R. & Chee, M.S. BeadArray Technology: enabling an accurate, cost-effective approach to high-throughput genotyping. Biotechniques 32, S56–S61 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Kazazian for comments on the manuscript, and A. Downend for assistance in manuscript preparation. This work is supported by grants from the US National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian G. Cheung.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheung, V., Spielman, R. The genetics of variation in gene expression. Nat Genet 32 (Suppl 4), 522–525 (2002). https://doi.org/10.1038/ng1036

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng1036

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing