Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes

Abstract

Microsatellites are a ubiquitous class of simple repetitive DNA sequence. An excess of such repetitive tracts has been described in all eukaryotes analyzed and is thought to result from the mutational effects of replication slippage1. Large-scale genomic and EST sequencing provides the opportunity to evaluate the abundance and relative distribution of microsatellites2 between transcribed and nontranscribed regions and the relationship of these features to haploid genome size. Although this has been studied in microbial and animal genomes3,4,5,6, information in plants is limited. We assessed microsatellite frequency in plant species with a 50-fold range in genome size that is mostly attributable to the recent amplification of repetitive DNA7. Among species, the overall frequency of microsatellites was inversely related to genome size and to the proportion of repetitive DNA but remained constant in the transcribed portion of the genome. This indicates that most microsatellites reside in regions pre-dating the recent genome expansion in many plants. The microsatellite frequency was higher in transcribed regions, especially in the untranslated portions, than in genomic DNA. Contrary to previous reports suggesting a preferential mechanism for the origin of microsatellites from repetitive DNA in both animals8,9 and plants10, our findings show a significant association with the low-copy fraction of plant genomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dinucleotide microsatellite frequencies in plants.
Figure 2: Frequency of microsatellites in relation to genome size and percentage of single-copy DNA.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Tautz, D. & Schlötterer, C. Simple sequences. Curr. Opin. Genet. Dev. 4, 832–837 (1994).

    Article  CAS  Google Scholar 

  2. Toth, G., Gaspari, Z. & Jurka, J. Microsatellites in different eukaryotic genomes: survey and analysis. Genome Res. 10, 967–981 (2000).

    Article  CAS  Google Scholar 

  3. Gur–Arie, R. et al. Simple sequence repeats in Escherichia coli: abundance, distribution, composition, and polymorphism. Genome Res. 10, 62–71 (2000).

    PubMed  PubMed Central  Google Scholar 

  4. Pupko, T. & Graur, D. Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units. J. Mol. Evol. 48, 313–316 (1999).

    Article  CAS  Google Scholar 

  5. Elgar, G. et al. Generation and analysis of 25 Mb of genomic DNA from the pufferfish Fugu rubripes by sequence scanning. Genome Res. 9, 960–971 (1999).

    Article  Google Scholar 

  6. Beckmann, J.S. & Weber, J.L. Survey of human and rat microsatellites. Genomics 12, 627–631 (1992).

    Article  CAS  Google Scholar 

  7. San Miguel, P., Gaut, B.S., Tikhonov, A., Nakajima, Y. & Bennetzen, J.L. The paleontology of intergene retrotransposons of maize. Nature Genet. 20, 43–45 (1998).

    Article  CAS  Google Scholar 

  8. Arcot, S.S., Wang, Z., Weber, J.L., Deininger, P.L. & Batzer, M.A. Alu repeats: a source for the genesis of primate microsatellites. Genomics 29, 136–144 (1995).

    Article  CAS  Google Scholar 

  9. Nadir, E., Margalit, H., Gallily, T. & Ben–Sasson, S.A. Microsatellite spreading in the human genome: evolutionary mechanisms and structural implications. Proc. Natl Acad. Sci. USA 93, 6470–6475 (1996).

    Article  CAS  Google Scholar 

  10. Ramsay, L. et al. Intimate association of microsatellite repeats with retrotransposons and other dispersed repetitive elements in barley. Plant J. 17, 415–425 (1999).

    Article  CAS  Google Scholar 

  11. Morgante, M. & Olivieri, A.M. PCR–amplified microsatellites as markers in plant genetics. Plant J. 3, 175–182 (1993).

    Article  CAS  Google Scholar 

  12. Lagercrantz, U., Ellegren, H. & Andersson, L. The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res. 21, 1111–1115 (1993).

    Article  CAS  Google Scholar 

  13. Metzgar, D., Bytof, J. & Wills, C. Selection against frameshift mutations limits microsatellite expansion in coding DNA. Genome Res. 10, 72–80 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Shama, S. & Meyuhas, O. The translational cis–regulatory element of mammalian ribosomal protein mRNAs is recognized by the plant translational apparatus. Eur. J. Biochem. 236, 383–388 (1996).

    Article  CAS  Google Scholar 

  15. Martienssen, R.A. & Colot, V. DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293, 1070–1074 (2001).

    Article  CAS  Google Scholar 

  16. Cardle, L. et al. Computational and experimental characterization of physically clustered simple sequence repeats in plants. Genetics 156, 847–854 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Crollius, H.R. et al. Characterization and repeat analysis of the compact genome of the freshwater pufferfish Tetraodon nigroviridis. Genome Res. 10, 939–949 (2000).

    Article  Google Scholar 

  18. Hartl, D.I. Molecular melodies in high and low C. Nature Rev. Genet. 1, 145–149 (2000).

    Article  CAS  Google Scholar 

  19. Meyers, B.C., Tingey, S.V. & Morgante, M. Abundance, distribution and transcriptional activity of repetitive elements in the maize genome. Genome Res. 11, 1660–1676 (2001).

    Article  CAS  Google Scholar 

  20. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

  21. Hancock, J.M. Simple sequences and the expanding genome. BioEssays 18, 421–425 (1996).

    Article  CAS  Google Scholar 

  22. Schlötterer, C. & Harr, B. Drosophila virilis has long and highly polymorphic microsatellites. Mol. Biol. Evol. 17, 1641–1646 (2000).

    Article  Google Scholar 

  23. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

  24. Bennetzen, J.L. Comparative sequence analysis of plant nuclear genomes: microcolinearity and its many exceptions. Plant Cell 12, 1021–1030 (2000).

    Article  CAS  Google Scholar 

  25. Kumar, A. & Bennetzen, J.L. Plant retrotransposons. Annu. Rev. Genet. 33, 479–532 (1999).

    Article  CAS  Google Scholar 

  26. Rabinowicz, P.D. et al. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genet. 23, 305–308 (1999).

    Article  CAS  Google Scholar 

  27. Keller, B. & Feuillet, C. Colinearity and gene density in grass genomes. Trends Plant Sci. 5, 246–251 (2000).

    Article  CAS  Google Scholar 

  28. Copenhaver, G.P. et al. Genetic definition and sequence analysis of Arabidopsis centromeres. Science 286, 2468–2474 (1999).

    Article  CAS  Google Scholar 

  29. Schlötterer, C. Evolutionary dynamics of microsatellite DNA. Chromosoma 109, 365–371 (2000).

    Article  Google Scholar 

  30. Stuart–Rogers, C. & Flavell, A.J. The evolution of Ty1–copia group retrotransposons in Gymnosperms. Mol. Biol. Evol. 18, 155–163 (2001).

    Article  Google Scholar 

  31. Pfeiffer, A., Olivieri, A.M. & Morgante, M. Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40, 411–419 (1997).

    Article  CAS  Google Scholar 

  32. Meyerowitz, E.M. in Methods in Arabidopsis Research (eds. Koncz, C., Chua, N.–H. & Schell, J.) 100–118 (World Scientific Publishing, Singapore, 1992).

    Book  Google Scholar 

  33. Dhar, M.S., Dabak, M., Gupta, V.S. & Ranjekar, P.K. Organization and properties of repeated DNA sequences in rice genome. Plant Science 55, 43–52 (1988).

    Article  CAS  Google Scholar 

  34. Goldberg, R.B. DNA sequence organization in the soybean plant. Biochem. Genet. 16, 45–68 (1978).

    Article  CAS  Google Scholar 

  35. Hake, S. & Walbot, V. The genome of Zea mays, its organization and homology in related grasses. Chromosoma 79, 251–270 (1980).

    Article  CAS  Google Scholar 

  36. Smith, D.B., Rimpau, J. & Flavell, R.B. Interspersion of different repeated sequences in the wheat genome revealed by interspecies DNA/DNA hybridisation. Nucleic Acids Res. 3, 2811–2825 (1976).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Li, K. Henderson for the soybean and wheat libraries, M. Dolan and the DuPont Genomics group for technical help and J.A. Rafalski and B. Mazur for discussions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Morgante.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgante, M., Hanafey, M. & Powell, W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30, 194–200 (2002). https://doi.org/10.1038/ng822

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing