Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes

Abstract

Genetic association studies are viewed as problematic and plagued by irreproducibility1. Many associations have been reported for type 2 diabetes2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17, but none have been confirmed in multiple samples and with comprehensive controls. We evaluated 16 published genetic associations to type 2 diabetes and related sub-phenotypes using a family-based design to control for population stratification, and replication samples to increase power. We were able to confirm only one association, that of the common Pro12Ala polymorphism in peroxisome proliferator-activated receptor-γ (PPARγ) with type 2 diabetes. By analysing over 3,000 individuals, we found a modest (1.25-fold) but significant (P=0.002) increase in diabetes risk associated with the more common proline allele (85% frequency). Moreover, our results resolve a controversy about common variation in PPARγ. An initial study found a threefold effect12, but four of five subsequent publications18,19,20,21,22 failed to confirm the association. All six studies are consistent with the odds ratio we describe. The data implicate inherited variation in PPARγ in the pathogenesis of type 2 diabetes. Because the risk allele occurs at such high frequency, its modest effect translates into a large population attributable risk—influencing as much as 25% of type 2 diabetes in the general population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimated risk (with 95% confidence intervals) for PPARγ Pro12Ala.

Similar content being viewed by others

References

  1. Editorial. Freely associating. Nature Genet. 22, 1–2 (1999).

  2. Almind, K. et al. Aminoacid polymorphisms of insulin receptor substrate-1 in non-insulin- dependent diabetes mellitus. Lancet 342, 828–832 (1993).

    Article  CAS  PubMed  Google Scholar 

  3. Widen, E. et al. Association of a polymorphism in the β 3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N. Engl. J. Med. 333, 348–351 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Baier, L.J. et al. An amino acid substitution in the human intestinal fatty acid binding protein is associated with increased fatty acid binding, increased fat oxidation, and insulin resistance. J. Clin. Invest. 95, 1281–1287 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hager, J. et al. A missense mutation in the glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. Nature Genet. 9, 299–304 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Kan, M. et al. Frequency of mutations of insulin receptor gene in Japanese patients with NIDDM. Diabetes 44, 1081–1086 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sakagashira, S. et al. Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 45, 1279–1281 (1996).

    Article  CAS  PubMed  Google Scholar 

  8. Sigal, R.J., Doria, A., Warram, J.H. & Krolewski, A.S. Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81, 1657–1659 (1996).

    CAS  PubMed  Google Scholar 

  9. Inoue, H. et al. Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. Diabetes 45, 825–831 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Hegele, R.A. et al. Paraoxonase-2 gene (PON2) G148 variant associated with elevated fasting plasma glucose in noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 82, 3373–3377 (1997).

    CAS  PubMed  Google Scholar 

  11. Shimomura, H. et al. A missense mutation of the muscle glycogen synthase gene (M416V) is associated with insulin resistance in the Japanese population. Diabetologia 40, 947–952 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Deeb, S.S. et al. A Pro12Ala substitution in PPARγ2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nature Genet. 20, 284–287 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Hani, E.H. et al. Missense mutations in the pancreatic islet β cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 41, 1511–1515 (1998).

    Article  CAS  PubMed  Google Scholar 

  14. Ishiyama-Shigemoto, S., Yamada, K., Yuan, X., Ichikawa, F. & Nonaka, K. Association of polymorphisms in the β2-adrenergic receptor gene with obesity, hypertriglyceridaemia, and diabetes mellitus. Diabetologia 42, 98–101 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Hart, L.M. et al. Prevalence of variants in candidate genes for type 2 diabetes mellitus in The Netherlands: the Rotterdam study and the Hoorn study. J. Clin. Endocrinol. Metab. 84, 1002–1006 (1999).

    CAS  PubMed  Google Scholar 

  16. Huxtable, S.J. et al. Analysis of parent-offspring trios provides evidence for linkage and association between the insulin gene and type 2 diabetes mediated exclusively through paternally transmitted class III variable number tandem repeat alleles. Diabetes 49, 126–130 (2000).

    Article  CAS  PubMed  Google Scholar 

  17. Day, C.P. et al. Tumour necrosis factor-α gene promoter polymorphism and decreased insulin resistance. Diabetologia 41, 430–434 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Clement, K. et al. The Pro115Gln and Pro12Ala PPAR γ gene mutations in obesity and type 2 diabetes. Int. J. Obes. Relat. Metab. Disord. 24, 391–393 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Hara, K. et al. The Pro12Ala polymorphism in PPAR γ2 may confer resistance to type 2 diabetes. Biochem. Biophys. Res. Commun. 271, 212–216 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Mancini, F.P. et al. Pro12Ala substitution in the peroxisome proliferator-activated receptor-γ2 is not associated with type 2 diabetes. Diabetes 48, 1466–1468 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Meirhaeghe, A. et al. Impact of the peroxisome proliferator activated receptor γ2 Pro12Ala polymorphism on adiposity, lipids and non-insulin-dependent diabetes mellitus. Int. J. Obes. Relat. Metab. Disord. 24, 195–199 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Ringel, J., Engeli, S., Distler, A. & Sharma, A.M. Pro12Ala missense mutation of the peroxisome proliferator activated receptor γ and diabetes mellitus. Biochem. Biophys. Res. Commun. 254, 450–453 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Spielman, R.S., McGinnis, R.E. & Ewens, W.J. Transmission test for linkage disequilibrium: the insulin gene region and insulin-dependent diabetes mellitus (IDDM). Am. J. Hum. Genet. 52, 506–516 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Spielman, R.S. & Ewens, W.J. A sibship test for linkage in the presence of association: the sib transmission/disequilibrium test. Am. J. Hum. Genet. 62, 450–458 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Allison, D.B. Transmission-disequilibrium tests for quantitative traits. Am. J. Hum. Genet. 60, 676–690 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Tontonoz, P., Hu, E. & Spiegelman, B.M. Stimulation of adipogenesis in fibroblasts by PPAR γ 2, a lipid-activated transcription factor. Cell 79, 1147–1156 (1994).

    Article  CAS  PubMed  Google Scholar 

  27. Lehmann, J.M. et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR γ). J. Biol. Chem. 270, 12953–12956 (1995).

    Article  CAS  PubMed  Google Scholar 

  28. Aguilar-Bryan, L. et al. Cloning of the β cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. Science 268, 423–426 (1995).

    Article  CAS  PubMed  Google Scholar 

  29. Masugi, J., Tamori, Y., Mori, H., Koike, T. & Kasuga, M. Inhibitory effect of a proline-to-alanine substitution at codon 12 of peroxisome proliferator-activated receptor-γ 2 on thiazolidinedione-induced adipogenesis. Biochem. Biophys. Res. Commun. 268, 178–182 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Barroso, I. et al. Dominant negative mutations in human PPARγ associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 402, 880–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Ristow, M., Muller-Wieland, D., Pfeiffer, A., Krone, W. & Kahn, C.R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N. Engl. J. Med. 339, 953–959 (1998).

    Article  CAS  PubMed  Google Scholar 

  32. Groop, L. et al. Metabolic consequences of a family history of NIDDM (the Botnia study): evidence for sex-specific parental effects. Diabetes 45, 1585–1593 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Alberti, K.G. & Zimmet, P.Z. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet. Med. 15, 539–553 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Edelstein, S.L. et al. Predictors of progression from impaired glucose tolerance to NIDDM: an analysis of six prospective studies. Diabetes 46, 701–710 (1997).

    Article  CAS  PubMed  Google Scholar 

  35. Shaw, J.E. et al. Impaired fasting glucose or impaired glucose tolerance. What best predicts future diabetes in Mauritius? Diabetes Care 22, 399–402 (1999).

    Article  CAS  PubMed  Google Scholar 

  36. Chen, X., Zehnbauer, B., Gnirke, A. & Kwok, P.Y. Fluorescence energy transfer detection as a homogeneous DNA diagnostic method. Proc. Natl Acad. Sci. USA 94, 10756–10761 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, X., Levine, L. & Kwok, P.Y. Fluorescence polarization in homogeneous nucleic acid analysis. Genome Res. 9, 492–498 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Boehnke, M. & Langefeld, C.D. Genetic association mapping based on discordant sib pairs: the discordant-alleles test. Am. J. Hum. Genet. 62, 950–961 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank B. Langhorst and P. Almgren for contributions to patient and genotype databases; A. Berglund, L. Roslund and M. Svensson for skilful laboratory assistance; M. Erdos for PCR primers to IRS1; C. Cellier, J. Faith, P. Perron, G. Houde, C. Betard and M.-E. Allard for their contributions to the Canadian study; The Botnia Research Team for clinical contributions; and members of the Whitehead Institute Center for Genome Research for helpful discussions. J.N.H. and D.M.A. are recipients of the Post-doctoral Fellowship for Physicians from the Howard Hughes Medical Institute. C.M.L. is sponsored by the Fund for Strategic Research through NNCR. L.G. receives support from the Sigrid Juselius Foundation, the JDF Wallenberg Foundation, the Finnish Diabetes Research Foundation, The Swedish Medical Research Council, the Novo-Nordisk Foundation and an EC Paradigm grant (BH K99JD-12812-01A; L.C.G). This work was supported in part by grants from Affymetrix Inc., Millennium Pharmaceuticals Inc. and Bristol-Myers Squibb Company to E.S.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Lander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altshuler, D., Hirschhorn, J., Klannemark, M. et al. The common PPARγ Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes. Nat Genet 26, 76–80 (2000). https://doi.org/10.1038/79216

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/79216

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing