Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin

Abstract

Autosomal recessive limb-girdle muscular dystrophies (AR LGMDs) are a genetically heterogeneous group of disorders that affect mainly the proximal musculature1. There are eight genetically distinct forms of AR LGMD, LGMD 2A–H (refs 210), and the genetic lesions underlying these forms, except for LGMD 2G and 2H, have been identified. LGMD 2A and LGMD 2B are caused by mutations in the genes encoding calpain 3 (ref. 11) and dysferlin12, respectively, and are usually associated with a mild phenotype11,12,13. Mutations in the genes encoding γ-(ref. 14), α-(ref. 5), β-(refs 6,7) and δ (ref. 15)-sarcoglycans are responsible for LGMD 2C to 2F, respectively. Sarcoglycans, together with sarcospan, dystroglycans, syntrophins and dystrobrevin, constitute the dystrophin-glycoprotein complex16,17 (DGC). Patients with LGMD 2C–F predominantly have a severe clinical course4,5,6,7,8,13,14,15,18,19,20. The LGMD 2G locus maps to a 3-cM interval in 17q11–12 in two Brazilian families with a relatively mild form of AR LGMD (ref. 9). To positionally clone the LGMD 2G gene, we constructed a physical map of the 17q11–12 region and refined its localization to an interval of 1.2 Mb. The gene encoding telethonin, a sarcomeric protein, lies within this candidate region. We have found that mutations in the telethonin gene cause LGMD 2G, identifying a new molecular mechanism for AR LGMD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physical map of the candidate region for the LGMD 2G locus, showing approximate locations of 40 genetic markers.
Figure 2: Haplotype analysis of markers from the 17q11–12 region in LGMD2G families.
Figure 3: DNA sequence electrophoregrams representing the two mutations in the telethonin gene associated with LGMD 2G.
Figure 4: Alignment of the normal (a) and mutated (b) telethonin gene sequences indicates the location of the two-G deletion.
Figure 5: Analysis of the telethonin protein in muscle samples.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Walton, J.N. & Gardner-Medwin, D. The muscular dystrophies. in Disorders of Voluntary Muscle (ed. Walton, J.) 519– 568 (Churchill Livingstone, New York, 1988).

    Google Scholar 

  2. Beckmann, J.S. et al. A gene for limb-girdle muscular dystrophy maps to chromosome 15 by linkage. C. R. Acad. Sci. III 312, 141–148 (1991).

    CAS  PubMed  Google Scholar 

  3. Bashir, R. et al. A gene for autosomal recessive limb-girdle muscular dystrophy maps to chromosome 2p. Hum. Mol. Genet. 3, 455–457 (1994).

    Article  CAS  Google Scholar 

  4. Ben Othmane, K. et al. Linkage of Tunisian autosomal recessive Duchenne-like muscular dystrophy to the pericentromeric region of chromosome 13q. Nature Genet. 2, 315–317 ( 1992).

    Article  CAS  Google Scholar 

  5. Roberds, S.L. et al. Missense mutation in the adhalin gene linked to autosomal recessive muscular dystrophy. Cell 78, 625 –633 (1994).

    Article  CAS  Google Scholar 

  6. Lim, L.E. et al. β-sarcoglycan: characterization and role in limb-girdle muscular dystrophy linked to 4q12. Nature Genet. 11 , 257–265 (1995).

    Article  CAS  Google Scholar 

  7. Bönnemann, C.G. et al. β-sarcoglycan (A3b) mutations cause autosomal recessive muscular dystrophy with loss of the sarcoglycan complex. Nature Genet. 11, 266–273 ( 1995).

    Article  Google Scholar 

  8. Passos-Bueno, M.R., Moreira, E.S., Vainzof, M., Marie, S.K. & Zatz, M. Linkage analysis in autosomal recessive limb-girdle muscular dystrophy (AR LGMD) maps a sixth form to 5q33-34 (LGMD2F) and indicates that there is at least one more subtype of AR LGMD. Hum. Mol. Genet. 5, 815–820 (1996).

    Article  CAS  Google Scholar 

  9. Moreira, E.S. et al. The seventh form of autosomal recessive limb-girdle muscular dystrophy is mapped to 17q11–12. Am. J. Hum. Genet. 61, 151–159 (1997).

    Article  CAS  Google Scholar 

  10. Weiler, T. et al. A gene for autosomal recessive limb-girdle muscular dystrophy in Manitoba Hutterites maps to chromosome region 9q31–q33: evidence for another limb-girdle muscular dystrophy locus. Am. J. Hum. Genet. 63, 140–147 ( 1998).

    Article  CAS  Google Scholar 

  11. Richard, I. et al. Mutations in the proteolytic enzyme calpain 3 cause limb-girdle muscular dystrophy type 2A. Cell 81, 27– 40 (1995).

    Article  CAS  Google Scholar 

  12. Bashir, R. et al. A gene related to Caenorhabditis elegans spermatogenesis factor fer-1 is mutated in limb-girdle muscular dystrophy type 2B. Nature Genet. 20, 37–42 (1998).

    Article  CAS  Google Scholar 

  13. Passos-Bueno, M.R., Vainzof, M., Moreira, E.S. & Zatz, M. Seven autosomal recessive limb-girdle muscular dystrophies in the Brazilian population: from LGMD2A to LGMD2G. Am. J. Med. Genet. 82, 392–298 (1999).

    Article  CAS  Google Scholar 

  14. Noguchi, S. et al. Mutations in the dystrophin-associated protein γ-sarcoglycan in chromosome 13 muscular dystrophy. Science 270, 819–822 (1995).

    Article  CAS  Google Scholar 

  15. Nigro, V. et al. Autosomal recessive limb-girdle muscular dystrophy, LGMD2F, is caused by a mutation in the δ-sarcoglycan gene. Nature Genet. 14, 195–198 ( 1996).

    Article  CAS  Google Scholar 

  16. Ozawa, E. Dystrophin-associated proteins in muscular dystrophy. Hum. Mol. Genet. 4, 1711–1716 ( 1995).

    Article  CAS  Google Scholar 

  17. Crosbie, R.H, Heighway, J., Venzke, D.P., Lee, J.C. & Campbell, K.P. Sarcospan, the 25-kD transmembrane component of the dystrophin-glycoprotein complex. J. Biol. Chem. 272, 31221–31224 ( 1997).

    Article  CAS  Google Scholar 

  18. McNally, E.M. et al. Mutations that disrupt the carboxyl-terminus of γ-sarcoglycan cause muscular dystrophy. Hum. Mol. Genet. 5, 1841–1847 (1996).

    Article  CAS  Google Scholar 

  19. Bönnemann, C.G. et al. Genomic screening for β-sarcoglycan gene mutations: missense mutations may cause severe limb-girdle muscular dystrophy type 2E (LGMD 2E). Hum. Mol. Genet. 5, 1953– 1961 (1996).

    Article  Google Scholar 

  20. Moreira, E.S. et al. A first missense mutation in the δ-sarcoglycan gene associated with a severe phenotype and frequency of limb-girdle muscular dystrophy type 2F (LGMD2F) in Brazilian sarcoglycanopathies. J. Med. Genet. 35, 951–953 ( 1998).

    Article  CAS  Google Scholar 

  21. Valle, G. et al. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett. 415, 163– 168 (1997).

    Article  CAS  Google Scholar 

  22. Mues, A., van der Ven, F.M., Young, P., Fürst, D.O. & Gautel, M. Two immunoglobulin-like domains of the Z-disc portion of titin interact in a conformation-dependent way with telethonin. FEBS Lett. 428, 111– 114 (1998).

    Article  CAS  Google Scholar 

  23. Gregorio, C.C., Granzier, H., Sorimachi, H. & Labeit, S. Muscle assembly: a titanic achievement? Curr. Opin. Cell Biol. 11, 18–25 ( 1999).

    Article  CAS  Google Scholar 

  24. Mayans, O. et al. Structural basis for activation of the titin kinase domain during myofibrillogenesis. Nature 395, 863 –869 (1998).

    Article  CAS  Google Scholar 

  25. Zatz, M., Vainzof, M., Passos-Bueno, M.R., Akiyama, J. & Marie, S.K.N. Autosomal recessive limb-girdle muscular dystrophies. in Handbook of Muscle Disease (ed. Russell, J.M.) 245–255 (Lane, London, 1996).

  26. Vainzof, M. et al. The sarcoglycan complex in the six autosomal recessive limb-girdle muscular dystrophies. Hum. Mol. Genet. 5, 1963–1969 (1996).

    Article  CAS  Google Scholar 

  27. Church, G.M. & Gilbert, W. Genomic sequencing. Proc. Natl Acad. Sci. USA 81, 1991– 1995 (1984).

    Article  CAS  Google Scholar 

  28. Lathrop, C.M., Lalouel, J.M., Juliev, C. & Ott, J. Strategies for multilocus linkage analysis in humans. Proc. Natl Acad. Sci. USA 81, 3443–3446 ( 1984).

    Article  CAS  Google Scholar 

  29. Budowle, B. et al. Analysis of the VNTR locus D1S80 by the PCR followed by high resolution PAGE. Am. J. Hum. Genet. 48, 137–144 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Beggs, A.H. et al. Cloning and characterization of two human skeletal muscle α-actinin genes located on chromossomes 1 and 11. J. Biol. Chem. 267, 9281–9288 ( 1992).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the family members for their constant collaboration; C. Urbani for secretarial assistance; A.A.F.C. Ribeiro, A.L. Sertié, A.M.P. Cerqueira, B. Birren, M. Canovas, W. Caldeira, H. Reimann and E. Stegmann for support and technical assistance; and R.C. Pavanello, I. Pavanello and S.K. Marie for clinical assessment. This research has been supported by grants from the Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Pesquisa e Desenvolvimento (CNPq) and the Programa dos Núcleos de Excelência (PRONEX). D.J. is supported by the Sonderforschungsbereich 469, project A5, of the German Research Council and the European commission (BMH4-98-3865). G.F. and G.V. are supported by the Italian Telethon Foundation, grant 1023 and B41. M.R.P.B. is supported in part by an International Research Scholars grant from the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Passos-Bueno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moreira, E., Wiltshire, T., Faulkner, G. et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat Genet 24, 163–166 (2000). https://doi.org/10.1038/72822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/72822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing