Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Vertebrate genome evolution and the zebrafish gene map

A Correction to this article was published on 01 July 1998

Abstract

In chordate phylogeny, changes in the nervous system, jaws, and appendages transformed meek filter feeders into fearsome predators1. Gene duplication is thought to promote such innovation2. Vertebrate ancestors probably had single copies of genes now found in multiple copies in vertebrates3 and gene maps suggest that this occurred by polyploidization2–7. It has been suggested that one genome duplication event occurred before, and one after the divergence of ray-finned and lobe-finned fishes5. Holland et al., however, have argued that because various vertebrates have several HOX clusters, two rounds of duplication occurred before the origin of jawed fishes3. Such gene-number data, however, do not distinguish between tandem duplications and polyploidization events, nor whether independent duplications occurred in different lineages. To investigate these matters, we mapped 144 zebrafish genes and compared the resulting map with mammalian maps. Comparison revealed large conserved chromosome segments. Because duplicated chromosome segments in zebrafish often correspond with specific chromosome segments in mammals, it is likely that two polyploidization events occurred prior to the divergence of fish and mammal lineages. This zebrafish gene map will facilitate molecular identification of mutated zebra-fish genes, which can suggest functions for human genes known only by sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Northcutt, R.G. & Cans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Quart. Rev. Biol. 58, 1–28 (1983).

    Article  CAS  Google Scholar 

  2. Ohno, S. Evolution by Gene Duplication. (Springer-Verlag, Heidelberg, 1970).

  3. Holland, P.W., Garcia-Fernandez, J., Williams, N.A. & Sidow, A. Gene duplications and the origins of vertebrate development. Development Suppl. 125-133 (1994).

  4. Holland, P.W. & Garcia-Fernandez, J. Hox genes and chordate evolution. Dev. Biol. 173, 382–395 (1996).

    Article  CAS  Google Scholar 

  5. Lundin, L.G .Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. Genomics 16, 1–19 (1993).

    Article  CAS  Google Scholar 

  6. Morizot, D.C. Use of fish gene maps to predict ancestral vertebrate genome organization. In: Isozymes: Structure, Function, and Use in Biology and Medicine. (Ogita, Z.-l. & Markert, C.L., eds) 207–234 (Wiley-Liss, New York, 1990).

  7. Ruddle, F.H., Bentley, K.L., Murtha, M.T. & Risch, N. Gene loss and gain in the evolution of the vertebrates. Development Suppl. 155–161 (1994).

  8. Postlethwait, J.H. et al. A genetic map for the zebrafish. Science 264, 699–703 (1994).

    Article  CAS  Google Scholar 

  9. Johnson, S.L. et al. Centromere-linkage analysis and the consolidation of the zebrafish genetic map. Genetics 142, 1277–1288 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Knapik, E.W. et al. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development 123, 451–460 (1996).

    CAS  Google Scholar 

  11. Elgar, G. et al. Small is beautiful: comparative genomics with the pufferfish (Fugu rubripes). Trends Genet. 12, 145–150 (1996)

    Article  CAS  Google Scholar 

  12. Alexandre, D. et al. Ectopic expression of Hoxa-1 in the zebrafish alters the fate of the mandibular arch neural crest and phenocopies a retinoic acid induced phenotype. Development 122, 7835–7846 (1996).

    Google Scholar 

  13. Ellies, D.L. et al. Relationship between the genomic organization and the overlapping embryonic expression patterns of the zebrafish dlx genes. Genomics 45, 580–590 (1997).

    Article  CAS  Google Scholar 

  14. Prince, V., Joly, J., Ekker, M. & Zebrafish hox genes: genomic organization and modified colinear expression patterns in the trunk. Development 125, 407–420 (1998).

    CAS  PubMed  Google Scholar 

  15. Ahlberg, P. & Milner, A. The origin and early diversification of tetrapods. Nature 368, 507–514 (1994).

    Article  Google Scholar 

  16. Katsanis, N., Fitzgibbon, J. & Fisher, E.M. C Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35,101–108 (1996).

    Article  CAS  Google Scholar 

  17. Kasahara, M. et al. Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. Proc. Natl. Acad. Sci. USA 93, 9096–9101 (1996).

    Article  CAS  Google Scholar 

  18. Molven, A., Hordvik, I., Njolstad, P.R., van Ghelue, M., & Fjose, A. The zebrafish homeobox gene hox[zf-114]: primary structure, expression pattern and evolutionary aspects. Int. J. Dev. Biol. 36, 229–234 (1992).

    CAS  PubMed  Google Scholar 

  19. Ekker, M., Wegner, J., Akimenko, M.-A. & Westerfield, M. Coordinate embryonic expression of three zebrafish engrailed genes. Development 116, 1001–1010 (1992).

    CAS  PubMed  Google Scholar 

  20. Zardoya, R., Abouheif, E. & Meyer, A. Evolution and orthology of hedgehog genes. Trends Genet. 12, 496–497 (1996).

    Article  CAS  Google Scholar 

  21. Sampath, K. & Stuart, G. Developmental expression of class III and IV POU domain genes in the zebrafish. Biochem. Biophys. Res. Commun. 219, 565–571 (1996).

    Article  CAS  Google Scholar 

  22. Meyer, A. Hox gene variation and evolution. Nature 391, 225–228 (1998).

    Article  CAS  Google Scholar 

  23. Zhang, J., Talbot, W. & Schier, A. Positional cloning identifies zebrafish one-eyed pinhead as a permissive EGF-related ligand required during gastrulation. Cell 92, 241–251 (1998).

    Article  CAS  Google Scholar 

  24. Haffter, P. et al. The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. Development 123, 1–36 (1996).

    CAS  Google Scholar 

  25. Driever, W. et al. A genetic screen for mutations affecting embryogenesis in zebrafish. Development 123, 37–46 (1996).

    CAS  Google Scholar 

  26. Riley, B.B. & Grunwald, D. Efficient induction of point mutations allowing recovery of specific locus mutations in zebrafish. Proc. Natl. Acad. Sci. USA 92, 5997–6001 (1995).

    Article  CAS  Google Scholar 

  27. Kimmel, C.B. Genetics and early development of zebrafish. Trends Genet. 5, 283–288 (1989).

    Article  CAS  Google Scholar 

  28. Henion, P.D. et al. Screen for mutations affecting development of zebrafish neural crest. Dev. Genet. 18, 11–17 (1996).

    Article  CAS  Google Scholar 

  29. Brady, K.P. et al. Genetic mapping of 262 loci derived from expressed sequences in a murine interspecific cross using single-strand conformational polymorphism analysis. Genome Res. 7, 1085–1093 (1997).

    Article  CAS  Google Scholar 

  30. Lander, E.S. et al. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postlethwait, J., Yan, YL., Gates, M. et al. Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18, 345–349 (1998). https://doi.org/10.1038/ng0498-345

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0498-345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing