Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Characterization of DRP2, a novel human dystrophin homologue

Abstract

The currently recognised dystrophin protein family comprises the archetype, dystrophin, its close relative, utrophin or dystrophin-related protein (DRP), and a distantly related protein known as the 87K tyrosine kinase substrate. During the course of a phylogenetic study of sequences encoding the characteristic C-terminal domains of dystrophin-related proteins, we identified an unexpected novel class of vertebrate dystrophin-related sequences. We term this class dystrophin-related protein 2 (DRP2), and suggest that utrophin/DRP be renamed DRP1 to simplify future nomenclature. DRP2 is a relatively small protein, encoded in man by a 45 kb gene localized to Xq22. It is expressed principally in the brain and spinal cord, and is similar in overall structure to the Dp116 dystrophin isoform. The discovery of a novel relative of dystrophin substantially broadens the scope for study of this interesting group of proteins and their associated glycoprotein complexes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Koenig, M., Monaco, A.P. & Kunkel, L.M. The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53, 219–228 (1988).

    Article  CAS  Google Scholar 

  2. Love, D.R. et al. An autosomal transcript in skeletal muscle with homology to dystrophin. Nature 339, 55–58 (1989).

    Article  CAS  Google Scholar 

  3. Maruyama, I.N., Rakow, T.L. & Maruyama, H.I. H. I. cRACE: a simple method for identification of the 5′ end of mRNAs. Nucl. Acids Res. 23, 3796–3797 (1995).

    Article  CAS  Google Scholar 

  4. Slegtenhorst-Eegdeman, K.E., Post, M., Baarends, W.M., Themmen, A.R.N. & Grootegoed, J.A. Regulation of gene expression in Sertoli cells by follicle-stimulating hormone (FSH): cloning and characterization of LRPR1, a primary response gene encoding a leucine-rich protein. Mol. Cell. Endocrinol. 108, 115–124 (1995).

    Article  CAS  Google Scholar 

  5. Byers, T.J., Lidow, H.G.W. & Kunkel, L.M. An alternative dystrophin transcript specific to peripheral nerve. Nature Genet. 4, 77–81 (1993).

    Article  CAS  Google Scholar 

  6. Vetrie, D. et al. A 6.5-Mb yeast artificial chromosome contig incorporating 33 DNA markers on the human X chromosome at Xq22. Genomics 19, 42–47 (1994).

    Article  CAS  Google Scholar 

  7. Vetrie, D. et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 361, 226–233 (1993).

    Article  CAS  Google Scholar 

  8. Wagner, K.R., Cohen, J.B. & Huganir, R.L. The 87K postsynaptic membrane protein from Torpedo is a protein tyrosine kinase substrate homologous to dystrophin. Neuron 10, 511–522 (1993).

    Article  CAS  Google Scholar 

  9. Suzuki, A., Yoshida, M., Yamamoto, H. & Ozawa, E. Glycoprotein-binding site of dystrophin is confined to the cysteine-rich domain and the first half of the carboxy-terminal domain. FEBS Lett. 308, 154–160 (1992).

    Article  CAS  Google Scholar 

  10. Suzuki, A., Yoshida, M. & Ozawa, E. Mammalian α1- and β1-syntrophin bind to the alternative splice-prone region of the dystrophin COOH terminus. J. Cell. Biol. 128, 373–381 (1995).

    Article  CAS  Google Scholar 

  11. Worton, R. Muscular dystrophies: diseases of the dystrophin-glycoprotein complex. Science 270, 755–756 (1995).

    Article  CAS  Google Scholar 

  12. Chomczynski, P. & Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

  13. Roberts, R.G., Barby, T.F.M., Manners, E., Bobrow, M. & Bentley, R. Direct detection of dystrophin gene rearrangements by analysis of dystrophin mRNA in peripheral blood lymphocytes. Am. J. Hum. Genet. 48, 298–310 (1991).

    Google Scholar 

  14. Frohman, M.A., Dush, M.K. & Martin, G. Rapid production of full-length cDNAs from rare transcripts: amplification using a single gene-specific oligonucleotide primer. Proc.Natl. Acad. Sci. USA 85, 8998–9002 (1988).

    Article  CAS  Google Scholar 

  15. Naylor, J., Brinke, A., Hassock, S., Green, P.M. & Giannelli, F. Characteristic mRNA abnormality found in half the patients with severe haemophilia A is due to large DNA inversions. Hum. Mol. Genet. 2, 1773–1778 (1993).

    Article  CAS  Google Scholar 

  16. Riley, J. et al. A novel, rapid method for the isolation of terminal sequences from yeast artificial chromosome (YAC) clones. Nucl. Acids Res. 18, 2887–2890 (1990).

    Article  CAS  Google Scholar 

  17. Green, P.M., Bentley, D.R., Mibashan, R.S., Nilsson, I.M. & Giannelli, F. Molecular pathology of haemophilia B. EMBO J. 8, 1067–1072 (1989).

    Article  CAS  Google Scholar 

  18. Philippe, C. et al. A high-resolution interval map of the q21 region of the human X chromosome. Genomics 27, 539–543.

    Article  CAS  Google Scholar 

  19. Roberts, R.G., Coffey, A.J., Bobrow, M. & Bentley, D.R. Determination of the exon structure of the distal portion of the dystrophin gene by vectorette PCR. Genomics 13, 942–950 (1992).

    Article  CAS  Google Scholar 

  20. Schofield, J.N. et al. Apo-dystrophin-1 and apo-dystrophin-2, products of the Duchenne muscular dystrophy locus: expression during mouse embryogenesis and in cultured cell lines. Hum. Mol. Genet 3, 1309–1216 (1994).

    Article  CAS  Google Scholar 

  21. Winder, S.J., Gibson, T.J. & Kendrick-Jones, J. Dystrophin and utrophin: the missing links! FEBS Lett. 369, 27–33 (1995).

    Article  CAS  Google Scholar 

  22. Sudol, M. et al. Characterisation of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J.Biol. Chem. 270, 14733–14741 (1995).

    Article  CAS  Google Scholar 

  23. Ponting, C.P., Blake, D.J., Davies, K.E., Kendrick-Jones, J. & Winder, S.J. ZZ and TAZ: new putative zinc fingers in dystrophin, CBP, p300 and other proteins.Trends Biochem. Sci. (in the press).

  24. Feener, C.A., Koenig, M. & Kunkel, L.M. Alternative splicing of human dystrophin mRNA generates isoforms at the carboxy terminus. Nature 338, 509–511 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roberts, R., Freeman, T., Kendall, E. et al. Characterization of DRP2, a novel human dystrophin homologue. Nat Genet 13, 223–226 (1996). https://doi.org/10.1038/ng0696-223

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ng0696-223

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing