UK loses track of its policy research

Report slams government for missing studies.

BY DANIEL CRESSEY

The UK government doesn’t know how much policy-linked research it has commissioned, or how much of such research has been published. That is the stark conclusion of an independent inquiry, published on 2 June, which details confusion about the status of research produced for government departments in areas ranging from social policy to climate change.

The inquiry was carried out by Stephen Sedley, a judge, law professor and trustee of Sense About Science, the London-based science-advocacy group that published the report. He spoke to government advisers, civil servants and researchers, and used multiple freedom-of-information requests to find out how much research commissioned by the government gets published.

According to official estimates, the government spends around £2.5 billion (US$3.6 billion) a year commissioning research linked to policy issues. But, Sedley says, it has “no comprehensive account” of how much is commissioned or published.

Just 4 out of 24 government departments told Sedley that they kept a centralized database of commissioned research. Others could not provide a list of the studies that they carried out or commissioned. Many departments said that it would be too costly to provide the information, because it was held in many different files and locations.

Civil servants told Sedley that they often waste time trying to find past studies. The report also notes several cases in which the publication of reports has been delayed owing to “political concerns about the implications of the research” — including work on drug policy and immigration.

“The fact that a few departments do maintain a research register, handle awkward findings and publish promptly exposes the excuses of those that don’t,” said Tracey Brown, director of Sense About Science, in a statement. The report calls for a central register of all government-commissioned research, a commitment to prompt publication, and routine publication of any work that has been used to inform government policy.

Hobbit relatives hint at family tree

Possible ancestors of Homo floresiensis found after long hunt.

BY EWEN CALLAWAY

More than a decade after the discovery that a diminutive relative of modern humans once lived on the Indonesian island of Flores, Gerrit van den Bergh was losing faith that he would find any clues to the ancestors of the ‘hobbit’. It was October 2014, and for four years he had co-led an industrial-scale excavation near the cave where the metre-tall skeleton had been found. Then, weeks before packing it in for the year, a local worker found a 700,000-year-old molar. More teeth and a partial jaw quickly followed.

“We had given up hope we would find anything, then it was ‘bingo!’,” says van den Bergh, a palaeontologist at the University of Wollongong, Australia, whose team reports the finds in two papers in this issue (G. D. van den Bergh et al. Nature 534, 245–248; 2016; and A. Brumm et al. Nature 534, 249–253; 2016). “We had this enormous party. We had a cow slaughter and there was dancing. It was marvellous.”

The unusually petite jaw and teeth are from at least one adult and two children — the first possible ancestors of Homo floresiensis ever to be discovered — and resemble the hobbit remains found on the island, which are between 60,000 and 100,000 years old.

The jaw and teeth address two questions that have dogged the study of the species — where did it come from and how did it get so small? But as with all things hobbit, there is little consensus among researchers, who say that firm conclusions require more fossils.

The hobbit’s discovery in 2003 in Liang Bua cave, by a team led by the late Australia-based rock-art specialist Mike Morwood, was an instant sensation. But its place in the human family tree is contentious. Morwood’s team proposed that it was a shrunken Homo erectus, the same species that probably evolved into Homo sapiens in Africa and that roamed as far as Europe and Asia. Other scientists who have examined features of H. floresiensis, such as its long, flat feet, think that it descended from a smaller, more primitive human relative such as Homo habilis or even Australopithecus.