Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons

Abstract

The perforant-path projection to the hippocampus forms synapses in the apical tuft of CA1 pyramidal neurons. We used computer modeling to examine the function of these distal synaptic inputs, which led to three predictions that we confirmed in experiments using rat hippocampal slices. First, activation of CA1 neurons by the perforant path is limited, a result of the long distance between these inputs and the soma. Second, activation of CA1 neurons by the perforant path depends on the generation of dendritic spikes. Third, the forward propagation of these spikes is unreliable, but can be facilitated by modest activation of Schaffer-collateral synapses in the upper apical dendrites. This 'gating' of dendritic spike propagation may be an important activation mode of CA1 pyramidal neurons, and its modulation by neurotransmitters or long-term, activity-dependent plasticity may be an important feature of dendritic integration during mnemonic processing in the hippocampus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strong and weak dendritic excitability models of CA1 pyramidal neurons respond differently to perforant-path activation.
Figure 2: Modes of activation of CA1 pyramidal neurons by perforant-path and Schaffer-collateral activation.
Figure 3: Gating of perforant-path–evoked dendritic spikes by Schaffer-collateral evoked EPSPs.
Figure 4: Dependence of PP-evoked dendritic spike propagation on the strength and timing of SC activation.
Figure 5: Mechanisms of conditional dendritic spike propagation.
Figure 6: Experimental perforant-path stimulus-response plot.
Figure 7: Dendritic spikes underlie perforant-path–evoked action potentials.
Figure 8: Coincident Schaffer-collateral stimulation increases spikelet frequency in response to perforant-path stimulation.

Similar content being viewed by others

References

  1. Stuart, G., Spruston, N., Sakmann, B. & Häusser, M. Action potential initiation and backpropagation in neurons of the mammalian CNS. Trends Neurosci. 20, 125–131 (1997).

    Article  CAS  Google Scholar 

  2. Johnston, D., Magee, J.C., Colbert, C.M. & Christie, B.R. Active properties of neuronal dendrites. Annu. Rev. Neurosci. 19, 165–186 (1996).

    Article  CAS  Google Scholar 

  3. Häusser, M., Spruston, N. & Stuart, G.J. Diversity and dynamics of dendritic signaling. Science 290, 739–744 (2000).

    Article  Google Scholar 

  4. Amaral, D.G. Emerging principles of intrinsic hippocampal organization. Curr. Opin. Neurobiol. 3, 225–229 (1993).

    Article  CAS  Google Scholar 

  5. Colbert, C.M. & Levy, W.B. Electrophysiological and pharmacological characterization of perforant path synapses in CA1: mediation by glutamate receptors. J. Neurophysiol. 68, 1–8 (1992).

    Article  CAS  Google Scholar 

  6. Desmond, N.L., Scott, C.A., Jane, J.A., Jr. & Levy, W.B. Ultrastructural identification of entorhinal cortical synapses in CA1 stratum lacunosum-moleculare of the rat. Hippocampus 4, 594–600 (1994).

    Article  CAS  Google Scholar 

  7. Levy, W.B., Colbert, C.M. & Desmond, N.L. Another network model bites the dust: entorhinal inputs are no more than weakly excitatory in the hippocampal CA1 region. Hippocampus 5, 137–140 (1995).

    Article  CAS  Google Scholar 

  8. Soltesz, I. Brief history of cortico-hippocampal time with a special reference to the direct entorhinal input to CA1. Hippocampus 5, 120–124 (1995).

    Article  CAS  Google Scholar 

  9. Yeckel, M.F. & Berger, T.W. Monosynaptic excitation of hippocampal CA1 pyramidal cells by afferents from the entorhinal cortex. Hippocampus 5, 108–114 (1995).

    Article  CAS  Google Scholar 

  10. Golding, N.L. & Spruston, N. Dendritic sodium spikes are variable triggers of axonal action potentials in hippocampal CA1 pyramidal neurons. Neuron 21, 1189–1200 (1998).

    Article  CAS  Google Scholar 

  11. Kamondi, A., Acsady, L. & Buzsaki, G. Dendritic spikes are enhanced by cooperative network activity in the intact hippocampus. J. Neurosci. 18, 3919–3928 (1998).

    Article  CAS  Google Scholar 

  12. Colbert, C.M. & Johnston, D. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons. J. Neurosci. 16, 6676–6686 (1996).

    Article  CAS  Google Scholar 

  13. Spruston, N., Schiller, Y., Stuart, G. & Sakmann, B. Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites. Science 268, 297–300 (1995).

    Article  CAS  Google Scholar 

  14. Golding, N.L., Kath, W.L. & Spruston, N. Dichotomy of action-potential backpropagation in CA1 pyramidal neuron dendrites. J. Neurophysiol. 86, 2998–3010 (2001).

    Article  CAS  Google Scholar 

  15. Hoffman, D.A., Magee, J.C., Colbert, C.M. & Johnston, D.K. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons. Nature 387, 869–875 (1997).

    Article  CAS  Google Scholar 

  16. Migliore, M., Hoffman, D.A., Magee, J.C. & Johnston, D. Role of an A-type K+ conductance in the back-propagation of action potentials in the dendrites of hippocampal pyramidal neurons. J. Comput. Neurosci. 7, 5–15 (1999).

    Article  CAS  Google Scholar 

  17. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  Google Scholar 

  18. Golding, N.L., Staff, N.P. & Spruston, N. Dendritic spikes as a mechanism for cooperative long-term potentiation. Nature 418, 326–331 (2002).

    Article  CAS  Google Scholar 

  19. Goldstein, S.S. & Rall, W. Changes of action potential shape and velocity for changing core conductor geometry. Biophys. J. 14, 731–757 (1974).

    Article  CAS  Google Scholar 

  20. Manor, Y., Koch, C. & Segev, I. Effect of geometrical irregularities on propagation delay in axonal trees. Biophys. J. 60, 1424–1437 (1991).

    Article  CAS  Google Scholar 

  21. Stuart, G.J. & Hausser, M. Dendritic coincidence detection of EPSPs and action potentials. Nat. Neurosci. 4, 63–71 (2001).

    Article  CAS  Google Scholar 

  22. Anderson, P., Storm, J. & Wheal, H.V. Thresholds of action potentials evoked by synapses on the dendrites of pyramidal cells in the rat hippocampus in vitro. J. Physiol. (Lond.) 383, 509–526 (1987).

    Article  CAS  Google Scholar 

  23. Andersen, P. & Lomo, T. Mode of activation of hippocampal pyramidal cells by excitatory synapses on dendrites. Exp. Brain Res. 2, 247–260 (1966).

    Article  Google Scholar 

  24. Buzsaki, G., Penttonen, M., Bragin, A., Nadasdy, Z. & Chrobak, J.J. Possible physiological role of the perforant path-CA1 projection. Hippocampus 5, 141–146 (1995).

    Article  CAS  Google Scholar 

  25. Empson, R.M. & Heinemann, U. The perforant path projection to hippocampal area CA1 in the rat hippocampal-entorhinal cortex combined slice. J. Physiol. (Lond.) 484, 707–720 (1995).

    Article  CAS  Google Scholar 

  26. Empson, R.M. & Heinemann, U. Perforant path connections to area CA1 are predominantly inhibitory in the rat hippocampal-entorhinal cortex combined slice preparation. Hippocampus 5, 104–107 (1995).

    Article  CAS  Google Scholar 

  27. Remondes, M. & Schuman, E.M. Direct cortical input modulates plasticity and spiking in CA1 pyramidal neurons. Nature 416, 736–740 (2002).

    Article  CAS  Google Scholar 

  28. Pare, D. & Llinas, R. Intracellular study of direct entorhinal inputs to field CA1 in the isolated guinea pig brain in vitro. Hippocampus 5, 115–119 (1995).

    Article  CAS  Google Scholar 

  29. Doller, H.J. & Weight, F.F. Perforant pathway activation of hippocampal CA1 stratum pyramidale neurons: electrophysiological evidence for a direct pathway. Brain Res. 237, 1–13 (1982).

    Article  CAS  Google Scholar 

  30. Yeckel, M.F. & Berger, T.W. Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: redefinition of the role of the trisynaptic pathway. Proc. Natl. Acad. Sci. USA 87, 5832–5836 (1990).

    Article  CAS  Google Scholar 

  31. Brun, V.H. et al. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296, 2243–2246 (2002).

    Article  CAS  Google Scholar 

  32. McNaughton, B.L., Barnes, C.A., Meltzer, J. & Sutherland, R.J. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res. 76, 485–496 (1989).

    Article  CAS  Google Scholar 

  33. Gasparini, S., Migliore, M. & Magee, J.C. On the initiation and propagation of dendritic spikes in CA1 pyramidal neurons. J. Neurosci. 24, 11046–11056 (2004).

    Article  CAS  Google Scholar 

  34. Fellous, J.M., Rudolph, M., Destexhe, A. & Sejnowski, T.J. Synaptic background noise controls the input/output characteristics of single cells in an in vitro model of in vivo activity. Neuroscience 122, 811–829 (2003).

    Article  CAS  Google Scholar 

  35. Frick, A., Magee, J. & Johnston, D. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites. Nat. Neurosci. 7, 126–135 (2004).

    Article  CAS  Google Scholar 

  36. Johnston, D., Hoffman, D.A., Colbert, C.M. & Magee, J.C. Regulation of back-propagating action potentials in hippocampal neurons. Curr. Opin. Neurobiol. 9, 288–292 (1999).

    Article  CAS  Google Scholar 

  37. Spencer, W.A. & Kandel, E.R. Electrophysiology of hippocampal neurons. IV. Fast prepotentials. J. Neurophysiol. 24, 272–285 (1961).

    Article  CAS  Google Scholar 

  38. Wong, R.K. & Stewart, M. Different firing patterns generated in dendrites and somata of CA1 pyramidal neurones in guinea-pig hippocampus. J. Physiol. (Lond.) 457, 675–687 (1992).

    Article  CAS  Google Scholar 

  39. Cauller, L.J. & Connors, B.W. Functions of very distal dendrites: experimental and computational studies of layer I inputs to layer V pyramidal neurons in neocortex. in Single Neuron Computation (eds. McKenna, T., Davis, J. & Zornetzer, S.F.) 199–230 (Academic Press, San Diego, 1992).

    Chapter  Google Scholar 

  40. Larkum, M.E., Senn, W. & Luscher, H.R. Top-down dendritic input increases the gain of layer 5 pyramidal neurons. Cereb. Cortex 14, 1059–1070 (2004).

    Article  Google Scholar 

  41. Larkum, M.E., Zhu, J.J. & Sakmann, B. A new cellular mechanism for coupling inputs arriving at different cortical layers. Nature 398, 338–341 (1999).

    Article  CAS  Google Scholar 

  42. Hines, M.L. & Carnevale, N.T. The NEURON simulation environment. Neural Comput. 9, 1179–1209 (1997).

    Article  CAS  Google Scholar 

  43. Megias, M., Emri, Z., Freund, T.F. & Gulyas, A.I. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102, 527–540 (2001).

    Article  CAS  Google Scholar 

  44. Magee, J.C. & Cook, E.P. Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat. Neurosci. 3, 895–903 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Spruston and Kath labs and B. Mel for discussions. This work was supported by the US National Institutes of Health (NS-35180 to N.S., NS-46064 to N.S. and W.L.K., and NS-045437 to T.J.) and by the National Science Foundation (DGE-9987577 to A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nelson Spruston.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Successful forward propagation of dendritic spikes in strong dendritic excitability models (model cells 1 and 2, with animations). (PDF 709 kb)

Supplementary Fig. 2

Gating of PP-evoked dendritic spikes by SC EPSPs (model cell 1, with animations). (PDF 846 kb)

Supplementary Fig.3

Gating of PP-evoked dendritic spikes by SC EPSPs (model cell 2, with animations). (PDF 1246 kb)

Supplementary Fig. 4

Gating of PP-evoked dendritic spikes by SC EPSPs (model cell 3). (PDF 646 kb)

Supplementary Fig. 5

Bidirectional gating of dendritic spike propagation by excitation and feed-forward inhibition. (PDF 241 kb)

Supplementary Video 1 (GIF 200 kb)

Supplementary Video 2 (GIF 209 kb)

Supplementary Video 3 (GIF 107 kb)

Supplementary Video 4 (GIF 80 kb)

Supplementary Video 5 (GIF 197 kb)

Supplementary Video 6 (GIF 122 kb)

Supplementary Video 7 (GIF 86 kb)

Supplementary Video 8 (GIF 199 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jarsky, T., Roxin, A., Kath, W. et al. Conditional dendritic spike propagation following distal synaptic activation of hippocampal CA1 pyramidal neurons. Nat Neurosci 8, 1667–1676 (2005). https://doi.org/10.1038/nn1599

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1599

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing